
CpE Tutorial:
Programming with Python

Ameer Mohammed

Computer Engineering Department

Kuwait University

ameermohammed.com/pytutorial

Topics

• The Python language and environment

• Variables and Data Types

• Control structures

• Functions

• Classes and Objects

• Other topics: GUI, APIs, Containers, etc. (if time permits)

This box will appear when
we want to highlight a
difference between Java
and Python

The New Textbooks

CpE 201
Advanced Programming

CpE 207
Data Structures

The Department Council
SharePoint contains:

• Lecture slides
• Instructor material
• Source code
• Figures

The History of Python

• Python 1.0:
• Initial design by Guido van Rossum
• Released in January 1994

• Python 2.0:
• Released in October 2000
• Introduced list comprehensions, augmented assignments, and string methods

• Python 3.0:
• Released in December 2008
• Major backwards-incompatible changes from 2.x
• Several changes in syntax
• Current stable version is 3.8.3 (13th May 2020)

Monty PythonGuido van Rossum

Paradigms for Programming Languages

Image courtesy of Laine et al. “Toward Unified Web Application Development” – IT Professional 2011

Python vs. Java Engines

.java

.py

Source Code

CPython
Compiler

Jython
Compiler

JVM + JIT

Python Virtual
Machine

Java bytecode

.class

javac
Java compiler

000100
010011
100011

Machine Code

CPython Interpreter

.pyc

bytecode

Java is a compiled language
Python is an interpreted language

Python vs. Java Engines

.py

CPython
Compiler

Python Virtual
Machine

000100
010011
100011

Machine Code

CPython Interpreter

.pyc

Integrated Development Environment (IDE)

PyCharm Professional Repl.it

Local cross-platform IDE Online cloud-based IDE

Local development (with VCS Integration) Collaborative development

Extensive debugger Simple debugger

Supports plug-ins and extensions Facilitates learning with code tools and templates

First Program: Hello World

• Let’s go to repl.it and open up a new Repl

Variables

• A variable is a name we designate to represent an object (number,
data structure, function, etc.) of a specific data type in our program.

• We use names to make our program more readable, so that the
object is easily understood in the program.

• Variable names cannot be the same as Python keywords

my_int = 3
my_str = “sandwich”

• Variables are assigned values using the =
operator (called the assignment operator)

Built-in Basic Data Types and Operators

Data Type Operators (ascending precedence) Example

integer

+ - % / // * ** ()

7

float 3.142

complex complex(2,8)

Bool True

str + “Hello”

Java does not have **
Needs Math.exp() for
exponentiation

Java numeric types are
size-bounded (int, long,
double). Python integer
sizes are unbounded.

Example: Variables and Data types

• Create variables that hold different data types then manipulate these
variables using various operators.

Variables

• Namespace contains
all variables currently
assigned values in
the program.

• Datatype of variables
change depending
on what value they
reference.

Example: Volume of a cylinder

• Write a program that accepts as input the height and radius of the
cross-section of cylinder, then outputs the result in the console.

Importing modules

• A module is a file containing Python definitions and statements. The
file name is the module name with the suffix .py appended.

• In order to use the statements of a specific module within your
program, you need to import it.

• To import the entire module:

• To import a specific definition from a module:

import math

from math import pi

Java vs. Python: Data Types and Operators

1. In Python, all data types are considered objects
• They have attributes and methods

2. In Python, variables do not need to be declared
• They are automatically defined as soon as they are

assigned a value

• They are dynamically-typed: their type can change at
runtime

• Explicit type conversion is possible

Java has “primitive” data
types occupying fixed
memory (e.g. int)

Java is statically typed: you
need to declare a variable
with its type at compile
time

Setting up the development environment

ameermohammed.com/pytutorial

Built-in Collection Data Types

Collection
Type

Properties Mutable? Example Java
Counterpart

List Ordered indexed collection Yes [1, 2, ‘a’, 8.6, 1] ArrayList

Dictionary Hash table of key-value
pairs, non-indexed

Yes {1:’a’, 2:’b’, 3:’c’} HashMap

Set Unordered non-indexed
list, no duplicates

Yes {‘h’, 3, ‘k’} HashSet

Tuple Immutable list No (1, 2, ‘a’, 8.6, 1) -

Range Immutable, homogeneous
list

No range(0,10) -

Topics

• The Python language and environment

• Variables and Data Types

• Control structures

• Functions

• Classes and Objects

• Other topics: GUI, APIs, Containers, etc. (if time permits)

Sequential Programs

Selection Statements

if boolean_expression:
statement1
statement2

else:
statement3
statement4

indent

Unlike Python, Java encloses
a block of statements in { }
instead of indentation

Selection Statements

if boolean_expression:
statement1
statement2

elif:
statement3
statement4

else:
statement5
statement6

Java also has switch statements.
Python does not.

Selection Statements

• Boolean Expressions
• These are expressions that evaluate to True or False. They are composed of

variables/expressions as operands acted on by relational/logical operations.

Relational Operator

<

<=

>

>=

==

!=

is, is not

in, not in

Logical Operator

and

or

not

Java uses &&, ||, and ! for
its logical operators

Selection Statements

• Examples: Boolean Expressions

• a == 3

• y > 50

• 10 <= x <= 20

• x > 20 and (y < 50 or z > 30)

• “apple” in my_list

Example: Login Module

• Write a program that takes as input a name and ID then outputs the
following to the console:

“Welcome to the system {NAME}. You are a {ROLE}”

• Where {NAME} is replaced with the entered name

• If the ID is between 200 and 250 then the system should instead
output “You are denied access to the system”.

• {ROLE} is substituted with “manager” if ID is less than 100 otherwise
it is substituted with “employee”

Selection Statements

• Boolean Expressions
• Difference between “==“ and “is” operators

a_float == b_float → True

a_float is b_float → False

b_float is c_float → True

Repetition Statements

while boolean_expression:
statement1
statement2

statement3
statement4

Example: Printing Even Numbers

• Write a program that prints out all even numbers from 10 to 40 then
outputs their sum.

Repetition Statements

for element in collection:
statement1
statement2
statement3

Example: Newsletter

• Create a list of customer names then print the following message on
the console for each customer on your list:

“Thank you for subscribing, {NAME}”

• Where {NAME} is replaced with the customer name.

Example: Printing Even Numbers

• Write a program that prints out all even numbers from 10 to 40 then
outputs their sum.

• Use the for control structure this time over the range collection.

Topics

• The Python language and environment

• Variables and Data Types

• Control structures

• Functions

• Classes and Objects

• Other topics: GUI, APIs, Containers, etc. (if time permits)

ameermohammed.com/pytutorial

Reusing Code

• Suppose you wrote some code that you would like to use in several
places in your program.

• Example: Computing the volume of a cylinder

vol = math.pi * (rad_int ** 2) * height_int

vol2 = math.pi * (rad_int2 ** 2) * height_int2

#....some code
Not easy to

maintain or share

Functions

• Functions are segments of code that perform some operation and
return one value.

• They "encapsulate" the performance of some particular operation, so
it can be used by others (for example, the sqrt() function)

• Once defined, functions can be called (or invoked) by other sections
of the program.

• They are an abstraction of an operation that facilitates:
• Modularity
• Reusability
• Security
• Maintainability

Using Functions

• Example: Computing the volume of a cylinder

Easy to maintain
and share

vol = calc_vol(r, h)

vol2 = calc_vol(r2, h2)

#....some code

Built-in Functions

• The Python
interpreter has a
number of functions
and types built into it
that are always
available.

https://docs.python.org/3/library/functions.html

https://docs.python.org/3/library/functions.html

Defining your own functions

Example: Volume of a Cylinder

• Create a function that takes as input the radius and height of the
cylinder then returns the volume.

Variable Scope and Function Parameters

Passing Immutable Objects

Immutable Objects

Integer

Float

Bool

String

Tuple

Range

Passing Mutable Objects

Mutable Objects

List

Dictionary

Set

Pass-by-value or pass-by-
reference??

Default and Named Parameters

def box(height, width=10,depth=10, color= "blue"):

print(height, width, length)

...other statements

The parameter assignment means two things:

• Defaults: If the caller does not provide a value, the default is the
parameter assigned value

• Named: You can get around the order of parameters by using the
name.

box(10, depth=4)

Example: Student Grade Manager

• Create a function that takes as input a student grades and a list of
weights then outputs the student’s final numeric grade.

• Create a function that takes as input the student’s numeric grade and
outputs the letter grade.

• Write a program that uses these functions to compute the letter
grades of any given student.

Topics

• The Python language and environment

• Variables and Data Types

• Control structures

• Functions

• Classes and Objects

• Other topics: GUI, APIs, Containers, etc. (if time permits)

ameermohammed.com/pytutorial

Object-Oriented Programming (OOP)

• Object oriented programming is a way
to think about “objects” in a program
(such as variables, functions, etc.)

• A program becomes less a list of
instruction and more a set of objects
and how they interact.

• A class in a program represents a user-
defined data type that one can use to
create objects (or instances) of the
same structure defined by the class.

Class and Object
Civic Class:

- Color
- Suspension
- Tires
- Engine
- ….

Instance 1:
- Color: white
- Engine: …

Instance 2:
- Color: green
- Engine: …

Instance 3:
- Color: blue
- Engine: …

Object Object Object

Defining new classes

Components of a Class Definition

• Constructor: used to initialize the data attributes
of a new instance.

• Class Attributes: consist of
• Class-wide attributes: shared by all instances.

• Methods: functions that “act” on an instance

• Data Attributes: instance-specific variables

Static class variables

Fields

Example: Student Class

• Create a new class representing a student data type with attributes:
first name, last name, and ID. Generate a new instance of Student.

• Instantiate an object of type Student

• Use the dir() built-in function to learn more about your class.

• Use instance_of() on the created object

Instance Creation and Attribute Access

• We can refer to the attributes of an object
using “dot” reference, of the form:

my_instance.instance_attribute

• The attribute can be a variable or a
function (method)

• The attribute is part of the object, either
directly or by that object being part of a
class.

Instance Creation and Attribute Access

• Attribute scope is observed between classes and instances.
• Classes can only access class attributes

• Instances can access class and instance attributes

• If a class attribute and instance attribute have the same name, instance
access takes precedence.

inst1 = MyClass()

inst2 = MyClass()

inst3 = MyClass()

MyClass.class_attribute = 27

Inst1.class_attribute = 72

Instance Method Call

• Methods are functions defined inside the suite of a class that
behave slightly differently than normal functions when called
as an object attribute.

• Methods always bind the first parameter in the definition to
the object that called it. The first argument is implicitly passed
as the object that called the method.

• This parameter can be named anything, but traditionally it is
named self

Instance Private Variables

• Every object has its own namespace to store all its local attributes
(variables, functions).
• Represented by the __dict__ variable

• Can create “private” attributes for instances. These are accessible
only within the class and not outside of it.
• “Private” variables are prefixed with single or double underscore.
• If double underscore is used, name is mangled: _ClassName__variable

• Note that privacy is NOT enforced. If you really want to access it, you
still can.

OOP Principles

• Encapsulation: hiding design details to make the program clearer and
easier to maintain.

• Inheritance: create a new object by inheriting object characteristics
while creating or over-riding for this object

• Polymorphism: allow one message to be sent to any object and have
it respond appropriately based on the type of object it is.
• Python calls this duck-typing

Encapsulation

• There is “soft” encapsulation in Python. While it is supported using
syntactical conventions, it is not enforced.

• A variable prefixed with an underscore (e.g. _name) should be
treated by the developer as a private part of the object (whether it is
a function, a method or a data member).

• Can use decorators to establish “setters” and “getters” for variables.
In Python, these methods are called properties.

Inheritance

• We can create relationships between classes in such a way so that
one class can inherit the structure and behavior of another class.

Why use inheritance?

• Specialization: A subclass can inherit code from its superclass and
anything that is particular to that subclass

• Override: Change a behavior to be specific to a subclass

• Reuse code: Use code from other classes (without rewriting) to get
behavior in our class.

Example: Inheritance

• Create a new base class called User that should have all the shared
logic for any User-type class

• Extend the Student class to inherit from User
• Update constructor to only create attributes specific to student

• Create a new class for Faculty that inherits from User

Inheritance

• Attribute Scope

1. Look in the object for the
attribute

2. If not in the object, look to
the object's class for the
attribute

3. If not in the object's class,
look up the hierarchy of that
class for the attribute

4. If you hit object, then the
attribute does not exist

Just like Java, methods are
virtual by default.

Inheritance: advanced features

• Python supports multiple inheritance
• Example: Student can inherit from User and Customer

• Python allows you to define metaclasses.
• These define how classes (as objects) are constructed

• Classes are also objects too and their type is a metaclass called “type”

• Can be used to define classes dynamically (even at runtime!)

Java does not have multiple
inheritance. Has interfaces
instead.

Polymorphism

• Polymorphism: the behavior of an object changes based on what
type it is.

• Duck-typing: a form of polymorphism
• Instead of relying on the type of the object to determine its behavior, the

presence of a given method or attribute is checked instead.

• This is realized in Python via:
• Function overriding: can redefine functions of parent classes

• Operator overloading: redefining operators for new objects

• Abstract classes and methods: can be used to force function overriding

• Note: Python does not support function overloading.

Example: Polymorphism

• Override User methods in Student to specialize it.

• Overload the “+” operator so that adding two students creates a new
student with GPA that is the average of the two students’ GPA.

• Overload the “dunder” method __str__ to replace implementation of
the built-in function

This is similar to
implementing the
.toString() method in Java

Topics

• The Python language and environment

• Variables and Data Types

• Control structures

• Functions

• Classes and Objects

• Other topics: GUI, APIs, Containers, etc. (if time permits)

ameermohammed.com/pytutorial

Graphical User Interface

• Python has many libraries and frameworks that allow developers to
build GUI applications for example:
• TkInter: traditionally bundled with Python as the standard GUI library

• PyQT: cross-platform library implementing the Qt interface

• Kivy: OpenGL ES 2 accelerated framework for the creation of new user
interfaces

• PySimpleGUI: a recent third-party library that wraps tkinter to build custom
GUI objects

Example: TkInter GUI Library

APIs for Scientific Computing

• There are some very useful libraries available for Python that help in
developing extensive computational programs and simulations.
• NumPy: for linear algebra

• matplotlib: for plotting and visualization

• pandas: for data manipulation that resembles relational database operations

• When imported, these libraries offer features that rival that of
MATLAB.

Other Topics

• There are other important topics that will be covered in the CpE 201 course
which we will not see here:
• Decorators
• Files and I/O
• Exception handling
• Event-driven programming
• …

• There are more advanced topics that are very useful to know:
• Comprehensions
• Lambda functions (anonymous functions)
• ctypes

