
Carnegie Mellon University

CARNEGIE INSTITUTE OF TECHNOLOGY

THESIS

SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

 FOR THE DEGREE OF Master of Science

TITLE Cryptographic Applications of Learning with Errors

PRESENTED BY Ameer Mohammed

ACCEPTED BY THE DEPARTMENT OF

 Information Networking Institute

 __ ________________________
 THESIS ADVISOR DATE

 __ ________________________

 ACADEMIC ADVISOR DATE

 __ ________________________

 DEPARTMENT HEAD DATE

APPROVED BY THE COLLEGE COUNCIL

 __ ________________________

 DEAN DATE

Cryptographic Applications of Learning

with Errors

Submitted in partial fulfillment of the requirements for

the degree of

Master of Science

in

Information Security Technology Management

Ameer A. Mohammed

B.S. Computer Engineering, Kuwait University

Carnegie Mellon University
Pittsburgh, PA

April, 2013

Copyright c© 2013 by Ameer A. Mohammed
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Acknowledgements

I would like to thank my thesis advisor, Avrim Blum, for his invaluable guidance

and for giving me this singular opportunity to work in this fascinating sub-domain

of cryptography. I would also like to express my sincere gratitude to Virgil Gligor for

providing helpful comments and suggestions for corrections regarding the thesis draft.

In addition, I would like to give credits to my academic advisor, Nicolas Christin,

who supplied the equipment capable of running the computationally-intensive ex-

periments documented in this work, and Tim Vidas who assisted with setting up an

account for the simulation machine.

I would like to express my gratitude towards my family and friends for their

unyielding support and words of encouragement. Finally, I would like to thank

Kuwait University for sponsoring my research and supporting my studies at Carnegie

Mellon University.

ii

Abstract

Many practical applications rely on the strength of cryptographic schemes to pro-

tect the security of data communication and storage. Several such schemes are based

on lattice and Learning with Errors (LWE) problems, which are presumed to be hard

to solve in the worst-case. In this work, we explore the relationship between lattice-

based problems and LWE, and discuss their applications in modern cryptography

including public-key cryptosystems and cryptographic primitives. Furthermore, the

Learning Parity with Noise (LPN) problem, a sub-class of the LWE problem, will be

more thoroughly studied. We examine and contrast the various algorithms that were

designed to solve the LPN problem and suggest improvements to some of them. We

analyze the feasibility of each algorithm in terms of performance, query complexity,

and memory utilization, and corroborate the analysis with experimental results using

different parameters.

iii

Table of Contents

Acknowledgements ii

Abstract iii

List of Tables viii

List of Figures ix

1 Introduction 1

1.1 Notation . 2

1.2 Problem Reductions . 3

1.3 Classes of Cryptographic Systems . 4

2 Lattice-Based Cryptography 6

2.1 Lattices . 6

2.2 Gram-Schmidt Orthogonalization . 10

2.3 Lattice Problems . 11

2.3.1 Shortest Independent Vector Problem 11

2.3.2 Shortest Vector Problem . 12

2.3.3 Unique Shortest Vector Problem 13

2.3.4 Promise SVP . 13

2.3.5 Small Integer Solutions . 14

2.3.6 Closest Vector Problem . 15

2.3.7 Bounded Distance Decoding 15

2.4 Problem Relations . 17

iv

2.5 Worst-case and Average-case Hardness 17

2.6 Cryptographic Applications . 18

2.6.1 Ajtai-Dwork . 18

2.6.2 GGH Cryptosystem . 21

3 Learning with Errors 24

3.1 The General LWE Problem . 24

3.2 Hardness Results . 25

3.2.1 Classical-Quantum Reduction 25

3.2.2 Full Classical Reduction . 27

3.2.3 Search-LWE to Decision-LWE Reduction 29

3.2.4 Worst-case to Average-case Reduction 29

3.3 Known Solutions . 30

3.4 Cryptographic Applications . 31

3.5 Learning Parity with Noise . 32

3.5.1 Pseudorandom Generator . 33

3.5.2 HB Protocol . 33

3.5.3 The LPN-C Encryption Scheme 36

4 Cryptanalytic Tools 38

4.1 Brute Force Approaches . 38

4.2 Birthday Attacks . 39

4.2.1 Birthday-based Algorithms . 40

4.2.2 Generalized Birthday Problem 41

4.3 The Walsh-Hadamard Transform . 43

4.3.1 Fast Walsh Transform . 44

4.3.2 Linear Correlation . 45

4.4 Lattice-Based Cryptanalysis . 48

4.4.1 Gauss’ Algorithm . 49

4.4.2 LLL Algorithm . 49

4.4.3 Nearest Plane Algorithm . 52

v

5 LPN Algorithms 53

5.1 Adversary Definition . 53

5.2 BKW Algorithm . 55

5.2.1 Noise Amplification . 55

5.2.2 Sample Definitions . 56

5.2.3 Design . 57

5.2.4 Analysis . 59

5.3 Hash Collision . 61

5.3.1 Design . 62

5.3.2 Analysis . 63

5.4 Fast Correlation Attacks . 64

5.4.1 FMICM Algorithm . 65

5.4.2 The Cube Root Method . 69

5.5 LF2 Algorithm . 72

5.5.1 Design . 72

5.5.2 Analysis . 73

5.6 Random Sampling . 74

5.6.1 Design . 74

5.6.2 Analysis . 75

5.7 Information Set Decoding . 76

5.7.1 Computational Syndrome Decoding 77

5.7.2 ISD Algorithm . 79

5.7.3 Design . 80

5.7.4 Analysis . 81

5.7.5 ISD Improvements . 83

5.8 Hybrid BKW Algorithm . 85

5.8.1 BKW-S Hybrid . 86

5.8.2 BKW-H Hybrid . 90

5.9 Experimental Tests . 90

5.9.1 Setup . 91

vi

5.9.2 BKW Parameters . 91

5.9.3 Results . 92

6 Conclusion 94

Bibliography 96

Appendix A Theorems 106

Appendix B Sub-Procedures 108

vii

List of Tables

Table 4.1 Truth Table for a 3-input Affine Boolean Function Family . . . 47

Table 5.1 Time Complexity for the Hashing Algorithm using η = 0.45 . . 64

viii

List of Figures

Figure 2.1 Lattice in R2. 8

Figure 2.2 Gram Schmidt Orthogonalization 10

Figure 2.3 Approximate and Exact SVP and CVP 12

Figure 2.4 The GapSVPζ,γ Problem . 14

Figure 2.5 Lattice Problems and Relationships 16

Figure 3.1 Quantum Reduction of LWE 26

Figure 4.1 Generalized Birthday Problem for 8-lists 43

Figure 5.1 Non-linear Pseudo-random Keystream Generation 65

Figure 5.2 Optimum Sample Size for Random Selection Algorithm 77

Figure 5.3 Optimum Sample Size for ISD Algorithm 83

Figure 5.4 Optimum Subweight for ISD Algorithm 84

Figure 5.5 The Fast Walsh Transform for 16-bit Hypothesis 88

Figure 5.6 Experimental Performance of BKW-S for k = 40 89

Figure 5.7 Theoretical Performance of BKW-S for k = 80 89

Figure 5.8 Optimal Parameters for the BKW Algorithm 91

Figure 5.9 Comparative Experimental Results for k = 32 93

Figure 5.10Comparative Experimental Results for k = 60 93

ix

1

Introduction

The goal of cryptography in information security is to protect private data from

being accessed and/or modified by unauthorized users while it is transmitted across

an open network or stored within a (possibly remote) storage device. This ensures

that data confidentiality and integrity (and possibly authenticity) are satisfactorily

maintained. In this work, we will mainly focus on cryptographic applications and

schemes that aim to achieve data confidentiality.

There exists various practical methods for implementing cryptography, and all

involve transforming the plaintext data into ciphertext (unreadable text) in a pro-

cess that is known as encryption. The operation of recovering the plaintext from

ciphertext is known as decryption and only authorized users with the right valid key

should be able to successfully decrypt a message that is intended to be received by

them. One way to evaluate the strength of an encryption system is on how difficult it

is to learn one or more bits of the plaintext data or some information that is related

to that data. If it is computationally infeasible to deduce any information about the

encrypted text without the key, then the encryption protocol is deemed to be secure.

Thus, some cryptographic primitives are based on hard mathematical problems such

1

as integer factorization, discrete logarithm problem, lattice-based problems, learning

parity with noise (LPN), and (more generally) learning with errors (LWE). Interest-

ingly, lattices can be used to construct cryptographic functions that are as hard to

break as the worst-case instance problem of approximating certain lattice problems,

such as the shortest vector (SVP) and closest vector (CVP) problems.

The contribution of this work focuses on exploring possible improvements to some

of the existing LPN algorithms as well as finding practical and feasible parameters for

these algorithms when solving certain instances of the LPN problem. The analysis

of these algorithms will cover implementation-specific details using concrete models,

which will be compared against asymptotic performance and theoretical bounds.

Comparisons will be made, where necessary, between the expected and actual results

to convey the performance of the studied algorithms in terms of the time taken and

the number of queries issued.

The outline of this thesis is as follows. In Section 2, the principles and fun-

damentals of lattice-based cryptography will be presented along with some of the

cryptographic schemes that were developed on the assumption of some worst-case

hard lattice problems. Section 3 will delve deeper into the LWE problem and its

provable hardness assumptions. The LPN problem will also be introduced as one of

the more useful hard problems on which several cryptographic primitives and schemes

were built. Section 4 will discuss some of the tools used in cryptanalysis, specifically

as useful sub-procedures for recovering one or more bits of the key. In Section 5,

the new and existing LPN adversary algorithms will be discussed, analyzed, and

compared followed by experimental results and discussion.

1.1 Notation

Throughout this work and unless otherwise specified, the following general rules

for notation will be used to denote specific entities and/or data structures. Lower-

2

case italicized Roman symbols (e.g. n) denote scalar values. Bold-faced lower-case

symbols, such as x, denote vectors of some given length. A vector x can also be

represented as a string of its constituents like so (x1, ..., xn). Bold-faced upper-case

symbols, such as B denote matrices with some arbitrary dimensions. A matrix B

can also be represented as a combination of its column vectors like so (b1, ...,bm).

We will also denote the ith element of some arbitrary vector x as xi or xj(i), if x is

the jth column vector in matrix X.

We denote the concatenation of two vectors x,y as (x||y). The term 〈x,y〉

indicates the inner product of the equally-sized vectors x and y.

We say that a function g(n) = poly(n) is a polynomial function if g(n) = O(nc)

for some c > 0. We say that a function g(n) = negl(n) is a negligible function if

g(n) = O(1/poly(n)). We let g(n) = Õ(f(n)) denote that the function is g(n) =

O(f(n) logc n) for some c > 0. We say that a function g(n) is sub-exponential in n

if g(n) ≤ 2cn ∀ c > 0 or g(n) = 2o(n).

1.2 Problem Reductions

We denote P as the class of problems that can be solved in polynomial time. We

denote NP as the class of problems whose solutions can be verified in polynomial

time. We will assume that P 6= NP even though the question of whether P = NP is

still open. We will often refer to algorithms as efficient if they solve their respective

problems in polynomial time complexity.

To prove the NP-hardness (or NP-completeness) of a specific problem, we would

often have to resort to transforming a previously known hard problem into the new

problem that we are investigating so that we can prove the new problem’s hardness

via a reduction proof.

Let A be the problem we are trying to prove to be hard and B be a problem that

we already know (from previous proofs and reductions) is hard (e.g. an NP -complete

3

problem). Thus, if we can transform any instance of B into any instance of A in

polynomial time, we can say that A is at least as hard as problem B. We will write

B ≤p A to denote the fact that B is polynomially reducible to A. This implies that

if there exists an algorithm that efficiently solves A, we will also be able to efficiently

solve B. Equivalently, if there is no such efficient algorithm for B, then there is no

efficient solution for A (i.e. if B is deemed hard then so is A).

1.3 Classes of Cryptographic Systems

Cryptographic schemes are often classified as either public-key or private-key (a.k.a.

symmetric) cryptographic systems. In public-key systems, each participating user

usually possesses two different, yet mathematically related, keys: a public key PK

and a private key SK. The public key is published for everyone to see, while the

private key is known only to the user that owns it. When a message is encrypted

using PK, only the corresponding private key SK can successfully and correctly

decrypt the encrypted message, thus ensuring that only the intended recipient is

able to decipher this message. Most public-key schemes allow for encrypting and

signing of messages. While the primary goal of encryption is confidentiality, the aim

of signing messages is mainly to ensure the authenticity of the transmitted data and

ascertain source non-repudiation. An example of such a scheme is RSA.

In private-key systems, each participating entity has one secret key SK that is

shared with other entities. A message that is encrypted with SK can only be de-

crypted by any user that has SK. Unlike public-key systems, secure key distribution

is often seen as a vital concern that must be addressed to avoid unauthorized ac-

quisition of the key. These systems are further categorized into stream cipher-based

and block cipher-based schemes. Stream ciphers (e.g. RC4) encrypt each bit of the

message individually using a pseudorandom keystream generator. Block ciphers (e.g.

DES and AES) encrypt messages by transforming fixed-size blocks of plaintext into

4

ciphertext of the same size. Block ciphers are normally used as building blocks for

encryption modes such as Chained-Block Cipher (CBC) and Counter (CTR) modes.

5

2

Lattice-Based Cryptography

Lattice-based cryptographic constructions have increasingly gained popularity during

the past few years due to their relatively efficient implementations and strong security

foundation that is based around the worst-case hardness of certain lattice problems.

While lattices were originally found to be quite potent as tools for cryptanalysis, it

was not until 1996 that Ajtai [2] had discovered their usefulness in the creation of

cryptographic systems including, but not limited to, cryptographic primitives, such

as one-way hash functions, and public-key systems with proven security bounds. In

this section, we outline the fundamental concepts of lattice-based cryptography and

briefly describe some of the influential cryptographic schemes that were developed

by researchers in this area. The background and definitions in this chapter are based

on the work in [58, 15]. We direct the reader to these sources for comprehensive

proofs and more details.

2.1 Lattices

A lattice can be described as a set of coordinates in n-dimensional real space and

is generally represented as all possible integer linear combinations of a set of linearly-

6

independent vectors. More formally, given a set of n-dimensional linearly-independent

vectors B = [b1, ...,bm], a lattice L is a discrete additive subgroup of Rn and is de-

fined as:

L(B) = L(b1, ...,bm) =

{
m∑
i=1

xibi : xi ∈ Z

}
= {Bx : x ∈ Zm} (2.1)

When the basis is represented as the matrix B, the columns of the matrix will indicate

the basis vectors:

B =

¨

˚

˚

˚

˚

˝

| | |
| | |

b1 b2 · · · bm
| | |
| | |

˛

‹

‹

‹

‹

‚

It follows from the definition of (2.1) that any lattice L is an additive group (closed

under subtraction):

∀ v,w ∈ L,v−w ∈ L where v 6= w

and that any lattice L is discrete with some fixed minimum distance between any

two lattice points (or equivalently, lattice vectors):

∃ δ > 0 : ∀ v,w ∈ L, ‖v−w‖≥ δ where v 6= w

The matrix B ∈ Rnxm is called the basis of the lattice, and it is not unique to

that specific lattice. In fact, one may find two different bases B and B’ = BU, for

any unimodular (i.e. determinant is +1 or -1) matrix U ∈ Zmxm, that will yield

the same lattice. In other words, we can find two (or more) distinct bases that may

result in creating the same set of discrete points on the hyperplane of dimension n.

Because of that, we may sometimes omit the basis from the lattice definition and

simply say that, for any one lattice Λ = L(B) regardless of the basis used to generate

7

Figure 2.1: An example of a lattice in R2 with two different possible set of basis
vectors

it. The length n of any basis vector bi is called the dimension of the lattice, and the

number of vectors m that make up the basis is called the lattice rank. A full rank

lattice is one where n = m. Figure 2.1 shows how a full rank 2-dimensional lattice

can be represented using two different bases: B = (b1,b2) = ([1, 0], [0.7, 1.1]) and

B’ = (b’1,b’2) = ([−0.4,−2.2], [−0.7,−1.1]).

The span of a lattice is defined as the continuous n-dimensional space occupied

by the lattice vectors, and is independent of the basis:

span(B) = span(Λ) = {Bx : x ∈ Rm} (2.2)

8

The fundamental domain of the lattice is defined as the space of points occupied

by the parallelepiped that is formed by the basis vectors:

P(B) = {Bx : ∀ i xi ∈ [0, 1) ∈ R} (2.3)

The width of P(B) is the minimum Euclidean distance between any one basis vector

bi and the span of the other basis vectors bj, i 6= j. The shaded regions in Figure

2.1 illustrate P(B) for the two different bases. A basis B’ can be considered a basis

for a lattice Λ if and only if P(B’) does not contain any lattice points from Λ other

than the origin.

The determinant det(Λ) of a lattice is the n-dimensional volume of the paral-

lelepiped P(B), and it is a lattice invariant that is independent of the basis:

det(Λ) =

b

|BTB| (2.4)

We define the dual of a lattice Λ as:

Λ∗ = {y ∈ span(Λ) : 〈x,y〉 ∈ Z ∀ x ∈ Λ} (2.5)

For any lattice with basis B, the basis of the dual of the lattice is B∗ = B(BTB)−1.

If the lattice is full rank, the dual basis is B∗ = (BT)−1.

Every lattice with rank m ≥ 1 has a set of m successive minima λ(Λ) =

(λ1, ..., λm) ∈ Rn where each component λi represents the length of the shortest non-

zero vector (between any two lattice points) for rank i with respect to any given norm.

One may also think of λi(Λ) as the radius of the smallest sphere centered around the

origin containing i linearly-independent lattice vectors in Λ. Normally, most appli-

cations are interested in the first successive minimum λ1(Λ) = minx∈Λ\0 ||x||2. We

can upper bound the value of λ1(Λ) in the l2 norm using Minkowski’s Theorem (see

Appendix A), where Λ is n-dimensional and full-rank:

λ1(Λ) ≤
?
ndet(Λ)1/n (2.6)

9

Figure 2.2: The normalized GSO vectors b̃1 and b̃2 for basis vectors b1 and b2

This can also be generalized for the product of higher rank successive minima:

˜

n∏
i=1

λi(Λ)

¸1/n

≤
?
ndet(Λ)1/n (2.7)

2.2 Gram-Schmidt Orthogonalization

Given a lattice Λ with basis B, the orthogonal lattice is defined as:

Λ⊥ = {y ∈ Rn : 〈x,y〉 = 0 ∀ x ∈ Λ} (2.8)

The Gram-Schmidt Orthogonalization (GSO) of n linearly independent vectors b1, ...,bn

is defined as:

b̃i = bi −
i−1∑
j=1

σi,jb̃j ∀ 1 ≤ i ≤ n (2.9)

where for any i ≥ 1 and j > i, σi,j =
〈bi,b̃j〉
〈b̃j ,b̃j〉 . The result of the GSO process is a set

of vectors (b̃1, ..., b̃n) where, for all j > i, vector b̃j is orthogonal to vector b̃i. The

10

vectors can be made orthonormal by scaling each vector by its size (ui = b̃i/||b̃i||)

and obtaining a normalized set. Furthermore, if we compute the GSO of a set of

vectors that form some lattice L(B), the resultant vectors b̃i are not guaranteed to

be part of the lattice. Figure 2.2 shows an example of a lattice along with its basis

vectors and GSO orthonormal vectors.

2.3 Lattice Problems

Generally, algebraic lattice problems are easier to solve than geometric problems.

For example, finding the basis of a lattice’s dual or checking if two bases generate

the same lattice can both be solved in deterministic polynomial time (see Section

2.1), whereas finding a polynomial approximation of the shortest vector in a lattice

is known to be NP-hard. Consequently, most of the interesting and potentially

useful problems are of the geometric nature, hence motivating their discussion in

this section.

2.3.1 Shortest Independent Vector Problem

Given a basis B for an n-dimensional lattice Λ of rank m, the exact Shortest Indepen-

dent Vector Problem, SIVP, can be solved by finding a set of m linearly independent

vectors (v1, ...,vm) where vi ∈ Λ and maxi||vi|| ≤ λm(Λ). The approximate version,

SIVPγ, can be solved by finding a set (v1, ...,vm) ∈ Λ such that:

maxi||vi|| ≤ γλn(Λ) (2.10)

where γ > 1 is an approximation factor. It was shown in [17] that SIVP is NP-hard

for γ = 2log1−ε n for some arbitrary ε > 0.

11

Figure 2.3: The left figure shows one solution for the exact (solid) and approximate
(dashed) SVP. The right figure shows one solution for the exact (solid) and

approximate (dashed) CVP.

2.3.2 Shortest Vector Problem

Given a basis B for a lattice Λ, the exact search version of the Shortest Vector

Problem, SVP, can be solved by finding a lattice vector v ∈ Λ\0n such that:

||v||≤ λ1(Λ) (2.11)

It is possible that there may be multiple linearly independent shortest vectors, but

finding only one would suffice as a solution to the problem. It was shown that this

version of SVP is NP-hard for the l∞ norm by [73]. Later on, Ajtai [3] proved

this hardness result for the l2 norm with randomized reductions. All known lattice

reduction algorithms (see Section 4.4) solve the problem in time exponential in the

dimension n of the lattice. Since this is not always desirable, we are often content

with a faster, preferably polynomial time, algorithm that can approximately solve

this problem. The approximate version of the Short Vector Problem, SVPγ, can be

solved by finding a lattice vector v ∈ Λ\0n such that:

||v||≤ γλ1(Λ) (2.12)

12

where and γ > 1 is an approximation factor. It was initially shown in [57] that

approximating the shortest vector within a constant factor of γ <
?

2 is NP-hard,

but this hardness result was later improved in [48] to apply for γ = 2(logn)1/2−ε under

the lp norm, for arbitrarily small ε > 0 and p > 1. An example of a solution for SVP

is shown in the left part of Figure 2.3.

2.3.3 Unique Shortest Vector Problem

Given a basis B for a lattice Λ and a gap factor γ ≥ 1, the Unique Shortest Vector

Problem, USVP, can be solved if we find a vector x ∈ Λ\0 with ||x||= λ1(Λ) (i.e.

shortest) such that there exists no other vector y ∈ Λ where y is a non-multiple of

x and ||x||≤ ||y||≤ γ||x|| (i.e. x is unique within gap γ). It has been shown in [2]

that worst-case USVP can be reduced, in polynomial time, to average-case SVP.

2.3.4 Promise SVP

Given a basis B for a lattice Λ, a gap factor γ > 1, and a distance d > 0, the decisional

promise variant of SVP, GapSVPγ, will return a 1 (YES) if λ1(Λ) ≤ d, will return

a 0 (NO) if λ1(Λ) > γd, and will return an undefined output otherwise. The best

known algorithm [5] that solves GapSVPγ for γ = poly(n) does so in exponential

time.

The general version of this problem, GapSVPζ,γ, incorporates additional condi-

tions on the given basis B by having λ1(Λ) ≤ ζ and 1 ≤ γd ≤ ζ for some ζ ≥ γ ≥ 1.

For ζ ≥ 2n, we arrive back to the original GapSVPγ problem. The conditions for the

YES and NO instances of this problem are unchanged. Figure 2.4 shows how the

GapSVPζ,γ problem can be illustrated as a set of concentric spheres where the radii

ζ and γ can be resized to define the problem that needs to be solved. We notice

from the figure that the problem will return a YES for lattice Λ and a NO for lattice

Λ′ provided that we have been promised that λ1 lies below ζ. This problem can be

13

d

λ1(Λ)

YES

NO

Undefined

γd

λ1(Λ')

ζ

Figure 2.4: The GapSVPζ,γ decisional problem solved for two different
n-dimensional lattices: Λ and Λ′ for some given d, γ, and ζ.

used to prove the hardness of LWE in the classical sense (see Section 3.2.2).

2.3.5 Small Integer Solutions

Given a modulus q ≥ 2, an integer k ≥ n, a matrix A ∈ Znxk
q and a threshold

real value v < q, the Small Integer Solution, SIS, problem can be solved by finding

y ∈ Zkq , a solution to the linear system of equations Ay = 0 mod q, subject to the

constraint that ||y||≤ v (i.e. length of y must be less than v). This problem is very

similar to classical SVP. To explain further, we should first consider the following

k-dimensional q-ary lattices, originally defined by Ajtai in [2]:

Λq(A) =
{
x ∈ Zkq : x = zA mod q for some z ∈ Znq

}
(2.13)

Λ⊥q (A) =
{
x ∈ Zkq : Ax = 0 mod q

}
(2.14)

14

We stress here that A is not a basis for the aforementioned lattices, but more of a

parameter on which to erect the lattices. In fact, we can consider the role of A in

Λq(A) as a generator for the linear code that is the lattice itself, and as a parity

matrix when used in Λ⊥q (A). Also, we note that Λ⊥q (A) is the orthogonal lattice of

Λq(A). Finding a solution to the SIS problem for A involves finding a ”short” vector

y ∈ Λ⊥q (A) such that ||y||≤ v. It was shown in [59] that the average-case version of

SIS is as hard as worst-case SIVP.

2.3.6 Closest Vector Problem

Given a basis B for a lattice Λ and a target vector t ∈ Rn, the exact search version

of the Closest Vector Problem (CVP) can be solved by finding a lattice vector v ∈ Λ

such that:

||v− t||≤ ||x− t|| ∀ x ∈ Λ (2.15)

In other words, one must find a lattice vector that is the closest to the given target

vector. The approximate version of the Closest Vector Problem, CVPγ, can be solved

by finding a lattice vector v ∈ Λ such that:

||v− t||≤ γ||x− t|| ∀ x ∈ Λ (2.16)

where γ > 1 is an approximation factor. It was shown in [28] that CVP is NP-hard

for γ ≤ 2log1−ε n. Furthermore, based on the work in [42, 38], CVP also appears to

be harder than SVP. An example of a solution for CVP is shown in the right part of

Figure 2.3.

2.3.7 Bounded Distance Decoding

Given a basis B for a lattice Λ, a target vector t ∈ Rn that is known to be at most

a distance of d from lattice Λ, the Bounded Distance Decoding problem, BDDd, can

15

ShortestDVector ClosestDVector

Quantum

Classical

[42]

[53]

[53]

[53]

[68]

[68]

[59]

[59]

LWE

BDD

SVP CVP

USVP

GapSVP

SIS

SIVP

LPN

DRLC

CSD

Figure 2.5: The relationships between the different discussed lattice problems. A
directional arrow from problem A to problem B implies that A ≤p B

be solved by finding the exact closest lattice point to t such that:

||v− t||≤ ||x− t|| ∀ x ∈ Λ (2.17)

Notice that the only difference between BDDd and CVP is the fact that in BDDd

we are given additional information about the target vector t, namely the proximity

between it and any one of the lattice points. Additionally, if we are given that

d < λ1(Λ)/2 then we are guaranteed a unique solution because there is only one

lattice vector that is closest to the target point at that distance. It was shown in

[52] that, in the lp norm, the BDDd problem is NP-hard for d ≥ λ1(Λ)
p
?

2
. The work

presented in [53] also demonstrates how the BDD problem is as hard as the USVP

problem by showing a reduction from USVP to BDD with d = λ1(Λ)/poly(n).

16

2.4 Problem Relations

Inspired by [72], a customized sub-compilation of the problems and their relationships

with each other is illustrated in Figure 2.5. Non-trivial relationships are annotated

with the appropriate reference for more details on the reduction. The lattice problems

can be generally divided into two categories, based on whether the goal is to find

shortest vectors in a lattice or to find lattice vectors that are closest to some target

vector. While there are many more lattice problems, we present only those that

are related to this work. In particular, we will be focusing on the Learning with

Errors (LWE) problem and its special case, the Learning Parity with Noise (LPN)

problem, both which will be defined in Chapter 3. The LPN problem is also related

to other non-lattice problems: the decoding of random linear codes (DRLC) and the

computational syndrome decoding (CSD) problem, which is described in more detail

in Section 5.7.1.

2.5 Worst-case and Average-case Hardness

It is desirable to have cryptographic schemes be based on problems that have average-

case hardness assumptions. An average-case hard problem ensures us that, with

high probability, drawing some random instance of the problem from a suitable

distribution and using it as part of a cryptographic protocol does not in any way

diminish the strength of the procedure. These problems also need to be in NP since

we want the decryption process to be polynomially verifiable by the authorized key-

holding party. For example, the well-known public-key cryptographic system, RSA, is

considered secure assuming that the integer factorization problem is hard on average,

and the Diffie-Hellman key exchange protocol is considered secure assuming that the

Discrete Logarithm problem and the Computational (and Decisional) Diffie-Hellman

problem are hard to solve on average.

17

The downside of having cryptographic systems based on average-case hard prob-

lems is that we need to make sure that we choose a suitable distribution from which

we draw the random instances such that we avoid drawing (with high probability)

easily solvable instances. For example, for RSA, choosing only small even numbers

as factors for the public key is clearly not a good choice. Thus average-case hardness

is necessary, but not sufficient for ensuring security.

On the other hand, if a cryptographic scheme was based on a worst-case hard

problem, then breaking this scheme would imply that we can solve any instance of

the problem. Consequently, we need not worry about how we generate the problem’s

instance. Several lattice problems have been shown to have provable relationships

and reductions between their worst-case and average-case versions. In his seminal

paper, Ajtai [2] established a reduction from worst-case USVP to average case ap-

proximate SVP. Furthermore, we will present in Section 3.2.4 a result obtained in [65]

proving that the worst-case decisional LWE problem can be reduced to its average-

case variant, which is considered more useful for cryptographic applications but still

as hard. In the next section, we describe a select number of schemes that are built

on worst-case lattice problems.

2.6 Cryptographic Applications

2.6.1 Ajtai-Dwork

Though not as efficient or as secure as more recently developed lattice-based systems,

the Ajtai-Dwork public-key cryptographic scheme [4] is, nevertheless, one of the first

cryptosystems that was built on the basis of worst-case hard lattice problems. In

particular, the scheme is based on worst-case USVP (see Section 2.3.3) using a gap

factor γ = poly(n), and was later improved in [39] to reduce the number of decryption

errors.

The scheme is parametrized with n which determines the strength of the system.

18

Given a message M composed of d bits, the encryption process encrypts each bit

bi ∈ {0, 1} of M individually to create ciphertext C = (c1, ..., cd) where ci = E(bi) ∈

Rn.

Definitions

We define the following parameters and distributions that will be used in the public-

key cryptographic scheme depicted in Algorithm 2.6.1:

s ∈ Rn : The vector that represents the private key.

m = n3 : The number of perturbation vectors

Un = {x ∈ Rn : ||x||≤ 1} : The n-dimensional sphere of radius 1

Bn = {x ∈ Rn : |xi|≤ 2nlogn ∀ i ∈ [1, n]} : An n-dimensional cube

Sn = {x ∈ Rn : ||x||≤ n−p} : An n-dimensional sphere of radius n−p where p ≥ 1.

In the original construction, p is set to 8.

H(s) : The distribution of points in Bn induced by private key s. This random

variable outputs a vector v = a +
n∑
i

yi where a is drawn uniformly at random from

the set {x ∈ Bn : 〈x, s〉 ∈ Z} and the perturbation vectors y1, ...,yn are drawn

uniformly at random from Sn.

Analysis

The developers of this scheme proved that if one was able to successfully distinguish

between the encryption of a 0 and the encryption of a 1, then one can also solve for

any instance of USVP, which at first glance seems to be satisfactory for a security

guarantee. However, the scheme has been shown by Nguyen and Stern [64] to be

insecure against a heuristic attack that allows an adversary to distinguish between

encryptions of 0 and 1 and recover the private key using only the corresponding

public key. The attack is based on a proof that reduced the problem of distinguishing

between encryptions to the problem of approximating, within a polynomial factor,

19

Algorithm 2.6.1 Ajtai-Dwork’s Public Key Cryptosystem

Private Key: Select s from Bn uniformly at random

Public Key: Select vectors w1, ...,wn and v1, ...,vm at random fromH(s) subject
to the constraint that the width of P(w1, ...,wn) = P(W) is less than 2nlogn/n2

Encryption:

for each bit bi in M do

if bi = 0 then

Select k1, ..., km uniformly at random from {0,1}
Select vector x ∈ P(W) such that x =

m∑
i

kivi +
n∑
j

rjwj for any rj ∈ Z.

else

Select vector x uniformly at random from P(W)

end if

Set ci = x

end for

Output C = (c1, ..., cd)

Decryption:

for each ciphertext ci in C do

if (z − 〈ci, s〉) ≤ 1/n for some z ∈ Z then

Set bi = 0

else

Set bi = 1

end if

end for

Output M = (b1, ..., bd)

20

the shortest (or closest) vector for specific lattices, which can be efficiently solved

using basis reduction algorithms (see Section 4.4). Furthermore, the size of the

public key in this scheme (the number of perturbation vectors) is relatively large,

and especially so when the size of the key is increased to counter the private key

recovery attack, leading to high memory utilization.

2.6.2 GGH Cryptosystem

The Goldreich-Goldwasser-Halevi (GGH) cryptosystem [40] is constructed via a trap-

door one-way function primitive that is based on the hardness of CVP. It was intro-

duced as a public key cryptographic scheme as well as a digital signature scheme,

which makes it suitable substitute for RSA. Unlike the Ajtai-Dwork scheme, GGH

makes explicit use of lattices to encrypt and decrypt.

The scheme is parametrized with n which determines the dimension, and subse-

quently, the strength of the scheme. At a high level, the given plaintext message M

will be represented as an n-dimensional vector and encoded as a lattice point Bm

in some lattice with randomly generated basis B. The ciphertext c = E(M) will

be represented as some point that is arbitrarily close to the lattice point Bm. The

decryption process involves applying Babai’s nearest plane algorithm (see Section

4.4.3) to solve an instance of the approximate closest vector problem using a differ-

ent private basis D. That is, given the (private) basis and the target vector c, one

should find the lattice vector closest to c to obtain the plaintext message.

Definitions

We define the following parameters that will be used in the public-key cryptographic

scheme depicted in Algorithm 2.6.2:

D ∈ Znxn : An integral matrix that represents the private key. It is to be generated

randomly as a ”good” basis (i.e. basis vectors are as orthogonal as possible) for a

21

full-rank lattice.

B ∈ Znxn : An integral matrix that represents the public key. It is considered as a

”poor” basis (i.e. basis vectors are not very orthogonal) for the full-rank lattice that

has basis D.

m ∈ Zn : The message to encrypt encoded as an integral vector.

η : A public real value representing the error

e ∈ Zn : The error vector used in the encryption process

Algorithm 2.6.2 GGH Public Key Cryptosystem

Private Key: Generate at random basis D with relatively small integers to build

lattice Λ

Public Key: Find a non-reduced basis B such that B = DU where U ∈ Znxn is

unimodular. This basis will also build lattice Λ

Encryption:

Encode M as m ∈ Zn

for each ei in e do

Assign ei a value from {−η, η} uniformly at random

end for

Set c = Bm + e

Output c

Decryption:

Using Babai’s Algorithm, compute y = D−1c = D−1(Bm + e) = D−1Bm
Set m = B−1D(y)
Output m . Decryption successful only if D−1e = 0n

Analysis

To prevent unauthorized entities from decrypting the ciphertext, the public key B

is generated such that it represents a ”poor” basis for lattice L(D). This way, any

entity using the public key as input to the nearest plane algorithm will not obtain

22

the correct message. Additionally, it is not trivial to obtain a good basis using any

of the known lattice basis reduction methods since doing so would imply that it is

easy to solve the approximate shortest vector problem. Thus, the decryption task

would be only be successful for the entity that holds the private key, the good basis

D.

It should also be noted that as we increase the error η, we are making the problem

harder since we are widening the distance between the message lattice point Bm and

the ciphertext lattice point c. While that may help in debilitating the adversary’s

efforts, it may also lead to an increase in decryption errors when the authorized

entity tries to decrypt the ciphertext.

Compared to the Ajtai-Dwork scheme, the size of the public key representation

is several orders lower. However, Nguyen [63] has demonstrated an attack on this

scheme for practical values of n ≤ 350 by exploiting a vulnerability that allowed for

the problem to be reduced to an easier instance of CVP. For an adversary with a

known-plaintext attack capability, this exploit presented an opportunity for a suc-

cessful decryption of a given ciphertext.

23

3

Learning with Errors

The Learning with Errors (LWE) problem was originally, albeit implicitly, introduced

by Ajtai and Dwork [4] with the construction of a public-key cryptosystem based on

the unique-SVP lattice problem, which could be reduced to LWE as means of ascer-

taining the problem’s hardness. After being formally defined in 2005 by Regev [68],

the LWE problem has since been employed as a flexible and fundamental basis prob-

lem for several cryptographic applications. As we will demonstrate in this chapter,

the LWE problem is known to be as hard as some worst-case lattice problems, thus

ensuring that cryptographic primitives based on the LWE problem are deemed to be

sufficiently and provably secure (computationally infeasible to break).

3.1 The General LWE Problem

Given some positive integer n ≥ 1, a modulus q ≥ 2, an error (typically Gaussian)

distribution χ, and a randomly chosen vector s ∈ Znq , we define Θs,χ to be an oracle

that, when queried, will supply a tuple of the form (a, 〈a, s〉+e mod q) where a ∈ Znq

is a vector chosen uniformly at random and e ∈ Zq is selected from χ. After m

24

queries to Θs,χ, we will have a set of examples encoded as a matrix A ∈ Znxm
q and a

corresponding vector z ∈ Zmq of noisy labels, where z = AT s + e mod q and e ∈ Zmq

is called the noise vector. We will denote this set of examples and corresponding

labels as the oracle set (A, z).

To solve the search LWEn,q,χ problem, one should recover, with high probability

(1 − negl(n)), the unknown vector s ∈ Znq given A and z. To solve the decisional

LWEn,q,χ problem, one should correctly distinguish between the uniform distribution

over Znq × Zq and the oracle set (A, z).

3.2 Hardness Results

The hardness results for the LWE problem was first proved by Regev [68] by propos-

ing a quantum reduction from approximating worst-case GapSVPγ and SIVP to

LWE. Later on, Peikert [65] proposed a more stringent, fully classical reduction from

the worst-case GapSVPζ,γ to LWE. It should be noted, however, that GapSVPζ,γ

is only equivalent to GapSVPγ for ζ ≥ 2n, so if one desires to reduce to GapSVPγ

instead, q is required to be exponential in n since, as we shall see in Theorem 3.2.2,

q is a proportionally related to ζ.

3.2.1 Classical-Quantum Reduction

Let us define α ∈ (0, 1), q ≥ 2, n > 1, and µ(Λ) ≤ λn(Λ)
a

ω(log n) to be a smoothing

parameter. Furthermore, let NΛ,r be a discrete Gaussian distribution over lattice Λ

with standard deviation r and χα be a discrete Gaussian distribution over Zq with

standard deviation αq.

Theorem 3.2.1 (LWE Quantum Hardness [68]). Given an LWEn,q,χα, a lattice Λ,

and poly(n) samples from NΛ,r one can approximately solve, using an efficient quan-

tum algorithm, the worst-case GapSVPγ and SIVP within a factor of Õ(n/α) given

that αq > 2
?
n and r ≥

?
2qµ(Λ).

25

nc samples

 LWE
Oracle

BDDαq/r√2

Solver

quantum generation

2

1

3

Figure 3.1: Given a LWE oracle, we can construct the BDD solver and quantumly
solve the DGS problem

The reduction involves running an iterative procedure where each iteration is com-

posed of two main steps: one classical and the other quantum. The main idea is to

use this iterative algorithm to solve the Discrete Gaussian Sampling (DGS) problem,

which is proven to be as hard as approximately solving GapSVPγ and SIVP within

some factor (that is GapSVPγ, SIVP ≤p DGS). To achieve this, we will construct a

Bounded Distance Decoding (BDD) oracle given the LWE oracle to solve the DGS

problem.

Discrete Gaussian Sampling

Given an n dimensional lattice Λ and a real r ≥
?

2nµ(Λ)/α, the goal of the DGS

problem is to find a sample in NΛ,r. By having r be close to the lower bound, we

can find relatively short vectors, with a norm of around r
?
n. Consequently, this

leads to an algorithm that uses DGS to solve SIVP: by calling the DGS algorithm

enough number of times we obtain with high probability n short linearly independent

vectors.

26

Classical Part

The input to the iterative algorithm is a real number r0 ≥
?

2nµ(Λ)/α and a lattice Λ.

We shall express ri as r0(αq/
?
n)i and initialize i = 3n. At the start of the procedure,

and only for i = 3n, we can efficiently generate poly(n) number of samples S3n from

NΛ,r3n using the LLL algorithm since r3n > 22nλn(Λ) (Step 1 of Figure 3.1).

For each iteration i = 3n, 3n − 1, ..., 1, the samples Si are fed into the LWE

oracle, whose output will then be used by the BDDαq/r
?

2 solver on the dual lattice

Λ∗ (Step 2 of Figure 3.1). The BDD solver can construct LWE samples of the form

(A,z) given the distribution NΛ,ri and a target vector t that is within a distance of

αq/(r
?

2) from Λ∗. Each vector a ∈ A is a sample from NΛ,ri , and each label z ∈ z

is set to be (〈a, t〉 mod q). The samples are submitted to the LWE oracle, which will

solve for secret s = v mod q where v is the output of the BDD solver (the lattice

point closest to t).

Quantum Part

The BDD solver (for the dual lattice Λ∗) is responsible for generating the next batch

of samples for i < 3n to be used in the next iteration. The generation process

(Step 3) involves constructing a quantum state using the BDD solver than applying

a quantum Fourier transform of NΛ,ri to obtain a sample from the new distribution.

We note here that the output of this phase is only one sample. To generate poly(n)

samples and set up Si, we need to execute Step 3 poly(n) number of times per

iteration i. After 3n iterations, we get the final sample set S0, which contains the

samples we need that solve the DGS problem for r0.

3.2.2 Full Classical Reduction

Theorem 3.2.2 (LWE Classical Hardness [65]). Let us define α ∈ (0, 1), γ ≥

n/(α
?

log n), ζ ≥ γ, and q ≥ (ζ/
?
n)ω(

?
log n). Given an LWEn,q,χα, a lattice

27

Λ, and poly(n) samples, one can solve, using an efficient algorithm, the worst-case

GapSVPζ,γ.

To achieve this, we first reduce GapSVPζ,γ to BBD on lattice Λ, then reduce BDD

to LWE using the same notion as Regev’s classical part of the iterative procedure (but

with classic generation of samples). Given a lattice basis B such that λ1(L(B)) ≤ ζ

and a number d where 1 ≤ γd ≤ ζ, we perform the following procedure poly(n)

times:

1. GapSVPζ,γ ≤p BDD: We select a random lattice point v ∈ L(B) and generate

the perturbed vector x = v + w mod q where w is drawn uniformly at random

from an n-dimensional ball with radius d
a

n/(4 log n)

2. BDD ≤p LWE: Call the BDD Solver (the same one used by Regev’s classical

reduction) with inputs B, x, and r = q
?

2n/γd. To satisfy the preconditions

of the BDD Solver, we must select r and γ such that the vector is perturbed

by a factor d′ = ||w||≤ αq/(
?

2r). The samples from DΛ∗,r are generated using

a classical method that is described in [34]. The output of the BDD solver will

be the lattice vector y that is closest to x.

3. Feedback to GapSVPζ,γ: If y 6= v, output YES (we found another vector that

is closer to x than v).

After all iterations complete, if the procedure never outputs YES, output NO. If a

NO is returned, then we know that λ1(Λ) ≥ γd, which implies that the minimum

distance between any two points is large when compared with d. This intuitively

leads to the BDD Solver to return the same vector v from which the perturbed

vector x was extended. However, with sufficiently large number of iterations, we are

guaranteed that, with probability 1 − 1/poly(n), we will produce a vector x that

28

allows the BDD to return a lattice vector y 6= v that is closer to x than v is to x.

This is a YES instance (i.e. λ1(Λ) < d).

3.2.3 Search-LWE to Decision-LWE Reduction

It has been shown in [68] that the search version of LWE can be reduced to the deci-

sion version of LWE, which implies that decision LWE is just as hard. Cryptographic

applications often rely on the decisional variant of LWE since their security is for-

mally based on the ability of an adversary to distinguish between true and random

encryptions.

Lemma 3.2.3 (Search-LWE ≤p Decision-LWE [68]). Assume we are given a decision

LWEn,q,χ oracle, where n ≥ 1, q ≥ poly(n) is prime, and χ is some distribution on

Zq. Then, there exists an efficient algorithm that can solve the search LWEn,q,χ given

samples (A, z) that are generated by oracle Θs,χ with some secret s.

Given a LWE sample pair (a, z), we provide as input into the decision-LWE oracle

the pair (a+dui, z+dk) where, for every k ∈ Zq, ui is the unit vector with a value of

1 for the element at position i and d is chosen uniformly at random from Zq. Let si

be the ith component of s. For any i, if k = si, then clearly, the pair (a+dui, z+dsi)

will appear to be from the distribution generated by Θs,χ. If k 6= si, then the pair

will instead appear to be from the uniform random distribution. Thus, for each bit

si, we use the decision-LWE to test if si = k by trying all possible k = q < poly(n)

and recover s. This takes at most qn = O(poly(n)) queries to the decision-LWE

oracle.

3.2.4 Worst-case to Average-case Reduction

It has been shown in [68] that the worst-case version of LWE can be reduced to the

average-case version of LWE, which implies that the average-case LWE problem is

just as hard. This is a useful result for cryptographic applications since this implies

29

that we need not concern ourselves with drawing strong (hard to solve) instances

of the problem for cryptographic primitives that are based on such assumptions. In

fact, it has been shown in [41] that we can choose s to be from any distribution

assuming that q = ω(nc) for all c (i.e. superpolynomial in n). This, however, incurs

a manageable increase in the dimension of s.

Lemma 3.2.4 (Worst-case ≤p Average-case [68]). Given n ≥ 1, q ≥ 1, and χ a

distribution on Zq, and decision LWEn,q,χ oracle that can distinguish between samples

of Θs,χ and samples from the uniform distribution for a non-negligible fraction of all

possible s. Then, there exists an efficient algorithm that can, for all possible s,

distinguish between samples of Θs,χ and samples from the uniform distribution.

Given a decisional average-case LWEn,q,χ, an input pair (a, z) and t ∈ Znq , we can

construct a new pair (a, z+ 〈a, t〉) that is either a sample from the oracle Θs+t,χ or a

sample from the uniform random distribution. We can then distinguish for any s by

calling the average-case oracle with different possible t until we discover the vector

s + t that allows us to identify the samples from the Θs+t,χ oracle.

3.3 Known Solutions

While there still has yet to be an algorithm that could efficiently (in polynomial

time) solve the LWE problem, there are still some efforts that attempt to solve this

problem in at least not much more than an exponential amount of time.

One simple algorithm is to draw samples from the LWE oracle expecting to find

poly(n) equations where each ai has one element with a value of 1 and n−1 elements

with a value of 0. This allows us to individually recover each bit of s in 2O(n logn) time

and number of samples. Another similarly straightforward solution is the maximum

likelihood method which uses around O(n) samples (since q = poly(n)) and 2O(n logn)

time to find the vector s’ that satisfies the given equations (in that case the actual s’

30

= s with high probability). The BKW algorithm [19] (see Section 5.2) seems to be

the best known method to solve the general LWE problem in 2O(n) time and number

of queries.

3.4 Cryptographic Applications

The versatility and provable hardness of the LWE problem has led to the rise of

several innovative and secure cryptographic primitives and systems. Moreover, the

inherent structure of the problem aids in constructing efficient and practical imple-

mentations that are resilient against polynomially-bounded adversaries and quantum

attacks.

One of the first IND-CPA secure public-key cryptosystems based on the LWE

problem was devised by Regev [68]. A similar, more efficient scheme was designed

in [66] where some of the randomness can be amortized across different encryptions

without affecting the asymptotic complexity. Some IND-CCA secure public-key cryp-

tosystems were also proposed in [65, 67].

More interestingly, fully homomorphic encryption (FHE) schemes were also de-

veloped based on the hardness of the LWE problem [33, 22, 20, 21]. These schemes

allow ciphertext to be modified, with a predictable change in the underlying enci-

phered message, without the need to decrypt the data first. A fully, as opposed

to a partial, homomorphic scheme is one where ciphertext modifications can include

both additions or multiplications.

Other cryptographic applications include oblivious transfer protocols [66], leakage-

resilient encryption schemes [6, 7, 41], identity-based encryption [34, 1, 27], secure

constructions of pseudorandom functions [9], and key distribution schemes [27]. Fur-

thermore, studies are under way to determine the types of lattices (ideal, general,

etc.) that preserve the hardness of the LWE problem, and can thus be safely used

as elements in a scheme.

31

3.5 Learning Parity with Noise

Given some positive integer n ≥ 1, an error probability η ∈ [0, 1/2), and a randomly

chosen vector s ∈ Zn2 , we define Πs,η to be an oracle that, when queried, will supply a

tuple of the form (a, 〈a, s〉⊕ e) where a ∈ Zn2 is a vector chosen uniformly at random

and e ∈ Z2 is selected from the distribution Ber(η). After m queries to Πs,η, we will

have a set of examples encoded as a matrix A ∈ Znxm
2 and a corresponding vector

z ∈ Zm2 of noisy labels, where z = sA⊕ e and e ∈ Zm2 is called the noise vector. To

solve the LPNn,η problem, one must recover the secret vector s given (A, z).

This is a special case of the LWE problem when q = 2. It is interesting to

note that, as of yet, there are no hardness relations between LWE and LPN (the

hardness proof of LWE only works for a modulus q > 2
?
n). A structurally similar

problem, the efficient decoding of random linear codes was shown to be NP-hard [14],

which strongly supports, but does not decisively prove, the average-case hardness of

LPN. While not as widely used as LWE for encryption schemes, the LPN problem

is nevertheless a foundation for several developed cryptographic applications. In

this section, we will discuss in more detail three cryptographic systems that could

be regarded as representative of the different applications that use the hardness

assumption of LPN as a basis for their security.

The apparent significance of the LPN problem in the field of cryptography further

lends weight to the importance of ensuring that schemes relying on this problem

are made secure against determined attackers. We shall thus revisit this problem in

Chapter 5, the main focus of this thesis, where we will examine and devise adversarial

algorithms that try to solve the LPN problem as efficiently as possible.

32

3.5.1 Pseudorandom Generator

A Pseudorandom Generator (PRG) is a function G : {0, 1}l → {0, 1}n that takes as

input a seed of size l and outputs a string of size n > l that is indistinguishable from

a random string of bits of size n. For some seed d, a PRG G is considered ε−secure

(ε is negligible) against an adversary A : {0, 1}n → {0, 1} if:

|Pr[A(G(d)) = 1]− Pr[A(Un) = 1]|≤ ε (3.1)

Here, Un is the uniform distribution of strings in {0, 1}n. The adversary outputs 1 if

it determines that the given string is from G and 0 otherwise.

One of the earlier cryptographic applications of LPN involved the construction of

a simple PRG [18]. A full proof on the strength of this primitive is described in the

cited paper. Let us assume that an error probability of η is used. For any A ∈ Zm×n2 ,

s ∈ Zn2 , and random seed d, we define a function G(A, s, d) = (A,As + e(d)), where

e(d) is a function that randomly samples an error vector from Berm(η) given seed

d. To ensure that G has an output that is greater than the size of the seed d, the

size of the seed must be at least H(η)m where H is the binary entropy function.

An efficient PRG was later constructed based on the syndrome decoding prob-

lem [29], which is quite similar to LPN. Moreover, an LPN-based PRG was later

developed in [7] that allows for a linear-stretch function in quasi-linear time.

3.5.2 HB Protocol

The Hopper-Blum (HB) protocol [43] and its successor, HB+ [46], are lightweight

authentication schemes based on the LPN problem. They were primarily designed to

work on devices that possess low processing power. The goal of any authentication

protocol is to allow two parties to prove their identities to each other by exchanging

protocol messages over a possibly insecure channel. The challenges when designing

such a protocol include preventing unauthorized entities from eavesdropping on an

33

ongoing communication and thwarting the efforts of any malicious third parties that

attempt to impersonate one legitimate entity to another during (or after) connection

establishment.

Assume that two parties, A and B, wish to authenticate each other with a pre-

shared k-bit key x. We define η to be the known probability of error within the

range (0,1/2) and q the number of required rounds. The protocol works as follows

(initiated by A):

Algorithm 3.5.1 HB Authentication Scheme

for i = 1 to q do

A selects uniformly at random vector ai ∈ {0, 1}k and sends it to B.

B calculates zi = 〈ai,x〉 ⊕ ei where ei ∈ {0, 1} is 1 with probability η.

B sends zi to A.

A calculates z′i = 〈ai,x〉 and compares it against the received zi.

end for

A accepts the authentication if zi = z′i for more than qη rounds.

Analysis

The HB protocol is considered secure against a probabilistic polynomial time passive

adversary whose goal is to recover the pre-shared key x. A passive adversary possesses

the sole capability of mounting known plaintext attacks. By only observing protocol

messages exchanged between the two legitimate parties, a passive adversary may

construct the set of noisy linear equations Ax = z where A = (ai, ..., aq) obtained

from A’s messages, z = (z1, ..., zq) obtained from B’s messages, and x is the key

to recover. This happens to be equivalent to solving the hard LPN problem. In

fact, the protocol designer can set parameters k and η to determine the resistance

factor of the scheme against any adversaries that try to attack the underlying LPN

34

problem. A passive attack is one of the main goals of the BKW (Section 5.2.1) and

other similar cryptanalysis algorithms.

It was shown, however, that the protocol is not secure against an active adversary:

one with the capability of choosing the vectors a at will. An adversary with this

capability can easily recover the key. For example, the attacker can send q unit

vectors of value (1,0,...,0) to B to obtain z1 = x1. A majority vote would determine

the actual value of x1, the first bit of the key. This can be repeated to obtain all the

bits of the key.

The improved version of this protocol, HB+, was designed in an effort to defend

against such attacks. Now we assume that A and B share two k-bit keys: x and y.

The protocol works as follows:

Algorithm 3.5.2 HB+ Authentication Scheme

for i = 1 to q do

A selects uniformly at random vector ai ∈ {0, 1}k and sends it to B.
B selects uniformly at random vector bi ∈ {0, 1}k and sends it to A.

B calculates zi = 〈ai,x〉⊕ 〈bi,y〉⊕ ei where ei ∈ {0, 1} is 1 with probability η.

B sends zi to A.

A calculates z′i = 〈ai,x〉 ⊕ 〈bi,y〉 and compares it against the received zi.

end for

A accepts the authentication if zi = z′i for more than qη rounds.

Analysis

The protocol was designed and proved to be secure against active adversaries that

observe the response at the receiver’s end (i.e. party B). However, an active attack

was devised in [37] where the adversary can recover the key by modifying the messages

of A and the observing the initiator (A). In particular, the adversary can change A’s

messages ai by adding (mod 2) the unit vector uj to each ai and observing whether

35

A accepts or refuses the transaction. If it accepts the transaction then bit xj of the

key is 0, else it is 1.

Several other variants of HB were developed in the hopes of defending against

passive and active attacks. Most recent is the HB# [36] and Trusted-HB [23] which

offer light-weight security against several Man-in-the-Middle attacks.

3.5.3 The LPN-C Encryption Scheme

The LPN-C [35] is a probabilistic private-key (symmetric) encryption scheme whose

hardness is based on the LPN problem. Unlike traditional symmetric encryption

modes whose security rely on the underlying block cipher, LPN-C builds a scheme

without using any block ciphers, and instead opting to directly use the hardness of

the LPN problem to establish the security of encryption. Regardless, messages are

encrypted in blocks (and padding is necessary if the last block is short of the block

size).

Definitions

k ∈ Z is the security parameter

r ∈ Z is the size of a block of message.

H : {0, 1}r → {0, 1}m a public error correcting code with correction capacity bd−1
2
c.

D ∈ Zk×m2 is a shared secret key.

m ∈ Zr2 is the message to encrypt.

C ∈ Zk2 × Zm2 is the ciphertext.

η ∈ (0, 1/2) is the probability of error.

e ∈ Zm2 is the error vector where each ei ← Ber(η).

Analysis

During encryption, it is vital that the Hamming weight of the error vector e is less

than the correction capacity to prevent any decoding errors when H−1 is called. We

36

Algorithm 3.5.3 LPN-C Private-Key Cryptosystem

Secret Key: Generate key D uniformly at random and distribute securely

Encryption:

Select uniformly at random vector a ∈ Zk2
Choose at random e such that Hamming weight of e < bd−1

2
c

Set y = H(m)⊕ (aD)⊕ e

Set C = (a,y)

Output C

Decryption:

Compute m’ = y⊕ (aD)

Set m = H−1(m’)

Output m

will repeatedly draw new e until we satisfy this condition. Furthermore, if for any

reason, the H−1 could not successfully decode the message, then an error flag is set

to notify the receiver.

The scheme described in Algorithm 3.5.3 was shown to be secure against adap-

tive chosen plaintext attacks (CPA) by showing that breaking LPN-C (with a CPA

capability) is as hard as distinguishing samples of Πs,η from random. This should

suffice to prove the security of this scheme since it has been shown in [47] that the

the hardness of LPN implies that the oracle Πs,η is sufficiently pseudorandom. To

equip the scheme with security against adaptive chosen ciphertext attacks, the au-

thors adopt the Encrypt-then-MAC paradigm by adding a MAC of the ciphertexts

to the transmitted messages. A closely related, but more efficient, variant of this

scheme was proposed in [7].

37

4

Cryptanalytic Tools

This chapter is devoted to explaining some of the cryptanalytic techniques which an

adversary might use to attack a scheme and recover the key. The significance of these

attacks relates to their potential adaptability as (sub-)solutions to the LPN problem.

Consequently, the analysis of these tools will aid the discussion of the adversaries in

Chapter 5 where we will be using some of the techniques described in this section

as components for devising procedures for solving the LPN problem. To simplify

the demonstration of the cryptanalytic tools, we will be mostly be concerned with

symmetric key cryptosystems that employ a single shared secret key.

4.1 Brute Force Approaches

While not very practical, brute force attacks against cryptographic schemes present

a necessary extreme and non-tight bound for an exhaustive search of the secret

key. Most of these techniques are usually applied on schemes which have no known

exploitable structural weaknesses, and can thus be the best attack an adversary can

mount against such schemes. For example, the 56-bit DES block-cipher was shown

to be easily broken with an exhaustive key search due to its relatively small key

38

space. Today’s cryptographic security standards [10] recommend a symmetric key

size of 112 bits to ensure that such attacks are deemed infeasible.

4.2 Birthday Attacks

Birthday attacks are a sub-class of brute-force attacks that exploit the birthday

problem (also known as the birthday paradox) to find collisions between sets of

random items. These attacks are quite generic and are usually independent of the

scheme or cryptographic primitive. Hence, there might exist other practical and more

efficient attacks which are specifically crafted towards specific schemes. Nevertheless,

birthday attacks are often seen as a better alternative for an adversary to use than

other brute-force approaches.

Theorem 4.2.1 (Birthday Paradox [13]). Given a list L containing N k-bit dis-

tinct pairwise independent elements, let q ≤ N be the number of elements that we

uniformly select (with replacement) at random from L. Furthermore, let the prob-

ability of at least one collision be C(N, q), where a collision implies that we se-

lected two elements x, y ∈ L and x = y. This probability will then be given by

C(N, q) = O

ˆ

q(q − 1)

2N

˙

.

Proof. Let Ei be the event which indicates that the ith item selected from L is equal

to one of the previously selected (i− 1) items. Then Pr[Ei] would be at most
i− 1

N

since the ith item that was selected may be equal to at most
i− 1

N
possibly different

items (for example, the previous selected items might have been all equal). Hence,

39

using Theorem A.0.2, we get the following:

C(n, q) = Pr[E1 ∨ ... ∨ Eq]

≤
q∑
i=1

Pr[Ei]

≤ 0

N
+

1

N
+ ...+

q − 1

N
=

∑q−1
i=1 i

N

=
q(q − 1)

2N

Corollary 4.2.2 ([13]). Given a list L of N items, choosing q = O(
?
N) items from

L uniformly at random will yield C(N, q) ≤ 1
2
.

The birthday paradox has seen many theoretical applications in cryptanalysis with

various levels of efficiency. In the case of modes of operations for block ciphers,

birthday attacks are used as means for proving the upper and lower bounds for the

security of the mode by defining the probability of collisions in the output of an

ideal block cipher. Furthermore, the output of hash functions can be analyzed by

determining the upper bound on the probability of collisions thus providing a suitable

measure of collision resistance.

4.2.1 Birthday-based Algorithms

Ideally, one would want to find collisions in time O(N) where N is the number

of items in the list. However, it is not known how this is achieved in the general

case. The brute force approach for finding a collision is to try every possible
`

N
2

˘

combination of items and test if they are equal.

Alternatively, one may pre-process the list by first sorting it using an efficient

sorting algorithm such as merge sort or quicksort, which takes time Θ(N logN).

The sorted items will easily indicate whether two consecutive items are equal, and

40

thus, form a collision. This method requires that all the relevant elements must be

present in the list before the search for collisions begins.

Hash functions may also be used to find collisions. Unlike sorting, finding col-

lisions using this method can be done at runtime so all the elements need not be

available at the start of the procedure. Assume that each element is of size b bits.

Furthermore, let H : {0, 1}b → {0, 1}s be a collision resistant hash function. We

create a hash table T of size 2s that is indexed using the output of H. Hence, when

we are given an element x, we save it in T [H(x)]. If two elements x, y are equal, then

we necessarily have H(x) = H(y). So if, after hashing some element y, we find that

location T [H(y)] is not empty and that y = T [H(y)], then we have found a collision

between y and the element currently residing in T [H(y)].

The hash function’s collision resistance property is used here not for cryptographic

reasons, but for performance reasons: to mitigate the effect of conflict resolution. It

is possible that x 6= y, but H(x) = H(y). Therefore, if T [H(x)] is not empty, and

we try to save y in the hash table, we will find that y 6= T [H(y)] so we need to

resolve this collision somehow, for example, using a linked list. A large number of

such collisions may yield performance issues, since we now need to search the list of

conflicts to find if a collision between equivalent items exists. Therefore, it is vital

to set s appropriately to minimize performance degradation.

4.2.2 Generalized Birthday Problem

The birthday problem can be restated by having 2 lists L1,L2 of sizes N1, N2, re-

spectively, constructed such that all elements in one list are distinct, and the goal is

to find x ∈ L1, y ∈ L2 such that x = y. If each element is of size k-bits, then the

expected number of collisions is
N1N2

2k
because we have N1N2 possible pairs and each

pair may be equal with probability 1/2k. Hence, we can find on average 1 collision

41

given N1 = N2 = 2k/2 samples in O(2k/2) time using a merge or hash-join algorithm.

The problem was formulated more generally for t-lists by Wagner in [74].

Theorem 4.2.3 (Generalized Birthday Problem [74]). Given a set of t lists L1, ...,Lt

each containing about 2k/(1+log2 t) elements, the birthday problem can be solved in time

and space O(t.2k/(1+log2 t)).

Proof. For any k-bit element x in a list, we denote xl to be the l least significant

bits of x. Let t be a power of 2 and 2l be the size of each list, where l is to be

determined. For each pair of lists Li,Li+1, where i is odd, we find all pairs of

elements x ∈ Li, y ∈ Li+1 such that xl = yl, and store (x ⊕ y) in a new list Li,i+1,

making sure to keep pointers to x and y. Thus, each element in the new lists will

have their l least significant bits equal to zero. The expected size of each of the new

t/2 lists Li,i+1 is given as
|Li|×|Li+1|

2l
=

2l × 2l

2l
= 2l.

We repeat the same joining procedure on each pair of lists Li,i+1 and Li+2,i+3

except this time we find elements x ∈ Li,i+1 and y ∈ Li+2,i+3 such that x2l = y2l and

store (x ⊕ y) in the new list Li,...,i+3. Again, each of the new t/4 lists contain on

average 2l elements.

This procedure is iterated until we end up with 2 lists where each of the elements

have zeros in their (log2 t−1)l least significant bits. We can then finally join the two

lists by finding matches between these two lists, where the probability of a match

is 1/2k−(log2 t−1)l. Any match indicates that we have found a collision: two elements

from the original lists that agree on all their k bits. The expected size of the final

combined list is equal to the expected number of collisions between the two remaining

lists, which is given as
2l × 2l

2k−(log2 t−1)l
=

2l+l log2 t

2k
= 2l+l log2 t−k. This value is at least 1

if l + l log2 t − k ≥ 0 or l ≥ k

1 + log2 t
. Since we started with t lists each of size 2l,

the time and space complexity is thus O(t.2l) = O(t.2k/(1+log2 t)).

42

L1,...,8

L1,...,4

L1,2

L1 L2

L3,4

L3 L4

L5,...,8

L5,6

L5 L6

L7,8

L7 L8

Figure 4.1: Solving the generalized birthday problem for 8 lists

To better clarify how this procedure work, Figure 4.1 illustrates the process for 8-

lists using a bottom-up complete binary tree of depth 3. Each intermediate list

at height h contains elements whose p least significant bits are all zeros, where

p =
hk

1 + log2 t
=
hk

4
. For example, after joining lists L1 and L2, all the elements in

L1,2 will have their k/4 least significant bits equal to zero.

While this technique presents us with a collision between a given set of elements,

sometimes we require more than one collision. This method can be easily extended

to find m1+log2 t collisions (or solutions to the birthday problem) simply by setting l =

k/(1+log2 t)+log2m such that the starting size of each list is now 2l = m2k/(1+log2 t).

The only restriction is that m ≤ 2k/(log2 t+(log2t)2).

4.3 The Walsh-Hadamard Transform

The Walsh-Hadamard Transform (WHT), denoted here as F , is a type of discrete

Fourier transform with practical applications in various fields including data compres-

sion, signal processing, quantum computations, and more relevantly, cryptanalysis,

as we shall demonstrate in this section.

Definition 4.3.1 (Walsh-Hadamard Transform). For some given function f(x) :

43

Zn2 → Z, the WHT of f is defined as follows:

F (w) =
∑
∀ x ∈ Zn2

f(x)(−1)〈w,x〉 where w ∈ Zn2 (4.1)

If f is a Boolean function f(x) : Zn2 → Z2, then the WHT of f can also be defined

as:

F (w) = |{x ∈ Zn2 : f(x) = 1, 〈w,x〉 = 0}|−|{x ∈ Zn2 : f(x) = 1, 〈w,x〉 = 1}| (4.2)

The Walsh Transform (WT), denoted as F ∗, is a slightly different kind of transfor-

mation. It applies the WHT on f ∗(x) = (−1)f(x), which has a range that lies in

{-1,1}.

F ∗(w) =
∑
∀ x ∈ Zn2

(−1)f(x)⊕〈w,x〉 where w ∈ Zn2 (4.3)

F ∗(w) = |{x ∈ Zn2 : f(x) = 〈w,x〉}|−|{x ∈ Zn2 : f(x) 6= 〈w,x〉}| (4.4)

Alternatively, the WT of a Boolean function f(x) : Zn2 → Z2 can be derived from

the WHT of f as follows:

F ∗(w) = −2F (w) + 2nδ(w) where δ(0) = 1, δ(w) = 0 ∀ w 6= 0 (4.5)

The naive time complexity of evaluating the WT for a function is O(22n) since for

each of the 2n values that w takes on, we need to evaluate the summation over all

the possible 2n values of x. However, we can improve this upper bound using a faster

algorithm, which we describe in the next section.

4.3.1 Fast Walsh Transform

The Fast Walsh-Hadamard Transform (FWHT), is an efficient algorithm that com-

putes F ∗ for f(x) : Zn2 → Z2 in time O(n2n) and can be either performed iteratively

or recursively. The procedure in its iterative form is shown in Algorithm 4.3.1 as

adapted from [45].

44

The algorithm accepts the truth table T for function f : Zn2 → Z2, where T [x] =

f(x) ∀ x ∈ [0, 2n− 1]. Using this truth table, the first for-loop evaluates F (w) for f .

This takes time O(n2n) since the outer for-loop is executed log2 2n = n times, and

the inner while-loop performs O(2n) addition/subtraction operations. The second

external for-loop simply obtains F ∗(w) by implementing Equation 4.5. Note that

all the computations are in-place such that the table T will be replaced with the

evaluated F ∗(w), and is returned as the output of this algorithm.

Algorithm 4.3.1 Fast Walsh Transform

1: procedure Fast Walsh Transform(T, n)
2: for i = 0 to n− 1 do . Obtain WHT of function
3: u← 2i
4: p← 0
5: while p < 2n do
6: for j = 0 to u− 1 do
7: t1 ← T[p+ j] + T[p+ u+ j]
8: t2 ← T[p+ j]−T[p+ u+ j]
9: T[p+ j]← t1
10: T[p+ u+ j]← t2
11: end for
12: p← p+ 2u
13: end while
14: end for

15:
16: for i = 0 to 2n − 1 do . Obtain WT out of WHT
17: T[i]← −2T[i]
18: if i = 0 then
19: T[i]← T[i] + 2n

20: end if
21: end for
22: return T
23: end procedure

4.3.2 Linear Correlation

Assume that we have a system of q linear equations consisting of n Boolean variables

and represented as z = sA ⊕ e where A ∈ Zn×q2 is the coefficient matrix, s ∈ Zn2

is the unknown vector, and e is an error vector with ei = 1 for some probability

η ∈ [0, 1/2). If η = 0, then we can use simple Gaussian elimination with q = n

independent equations to retrieve s. However, for η > 0, this task becomes much

45

harder (see Section 3.5). Nevertheless, using q sufficient equations, we can discover

vector s with high probability if we use the FWHT. This is achieved by having the

FWHT provide the most probable value of s; that which satisfies the most number

of q equations. We describe how this is done after defining some necessary concepts.

Definitions

Definition 4.3.2 (Affine Boolean Function). An affine Boolean function f : Zn2 →

Z2 is a degree-1 function that can be represented in the following format:

f(x1, ..., xn) = snxn ⊕ sn−1xn−1 ⊕ ...⊕ s1x1 ⊕ s0 (4.6)

where s0, ..., sn are Boolean coefficients. f is called a linear function if s0 = 0.

The constant s0 is added to differentiate between a specific function and its com-

plement. We further define a family of n-bit affine Boolean functions as the set of

all different possible affine functions that accept n Boolean variables as input. Each

function in the family is obtained by setting the tuple of coefficients (s1, ..., sn) to

one of 2n different possible combinations. We disregard the value of the constant s0

as we shall be treating a function and its complement as the same affine function.

Table 4.1 shows the truth table for such a family of functions that accept 3 Boolean

variables.

We also define the non-linearity of a function, which measures how far a given

function is from an affine function.

Definition 4.3.3 (Non-Linearity). Let Hn be the family of n-input affine Boolean

functions. The non-linearity, φ, of a Boolean function f : Zn2 → Z2 is given by:

φ(f) = min
i
dist(f, hi ∈ Hn) (4.7)

where dist(f,g) is the Hamming distance between functions f and g.

46

f f(000) f(001) f(010) f(011) f(100) f(101) f(110) f(111)
0 0 0 0 0 0 0 0 0
x0 0 1 0 1 0 1 0 1
x1 0 0 1 1 0 0 1 1

x1 ⊕ x0 0 1 1 0 0 1 1 0
x2 0 0 0 0 1 1 1 1

x2 ⊕ x0 0 1 0 1 1 0 1 0
x2 ⊕ x1 0 0 1 1 1 1 0 0

x2 ⊕ x1 ⊕ x0 0 1 1 0 1 0 0 1
Table 4.1: Truth Table for a 3-input Affine Boolean Function Family

Functions with high non-linearity are specifically desirable for stream-cipher based

encryption mechanisms that use linear feedback shift registers (see Section 5.4), since

linear correlations between the registers’ states and their combined output will be

harder to discover. The FWHT can be used to find the non-linearity of a function

as follows:

φ(f) =
2n −maxw|F ∗(w)|

2
(4.8)

Hypothesis Testing

Finding the most likely s given z and A is akin to finding the closest affine function

to that system of equations. Thus, this problem can also be that of finding the

coefficients of an unknown affine function. By constructing the truth table of the

unknown function using the given equations, we can compare this table of values

against all affine functions in a family to discover the one that yields the minimum

non-linearity and, therefore, the maximum similarity.

To construct the truth table for f(x), we find all possible unique patterns (columns)

of A and store their corresponding label (obtained from z) in the table. In other

words, for each ai ∈ A, we set f(ai) = zi. If their exists multiple ai with the same

pattern, but with different labels, we store the label that occurred most frequently.

A specific pattern might not exist in A leading to an empty entry in the truth table.

47

Nevertheless, if the number of missing patterns is minimal then this should not deter

from obtaining the correct result.

Once the truth table, f(x), is constructed and submitted to the FWHT proce-

dure, it will be compared efficiently to every affine function g in the family of affine

functions of the same input size. For example, for a 3-input function, if w = (101),

f(x) will be compared with g(x) = x2 ⊕ x0. The value of w that yields the highest

F ∗(w) (see Equation 4.5), and consequently, the lowest non-linearity, will be the

one that provides the most probable coefficients s = w for the unknown function’s

representation (see Equation 4.6). Incidentally, these coefficients are also the desired

unknown vector that we are trying to find.

Based on the analysis of hypothesis testing in [25], it was shown that, given q

parity equations (A has q columns) to hypothesize b bits of the unknown vector s,

where b ≥ log2q, the running time of the FWHT is O(2b log2 q). We notice that if

b = log2 q then this complexity reduces to O(b2b) as was shown earlier in this section.

4.4 Lattice-Based Cryptanalysis

Lattice reduction algorithms have seen wide use in attacking cryptosystems based

on hard problems. Applications range from solving number theoretic problems to

approximating solutions of hard lattice problems such as the shortest vector problem.

It is therefore helpful to look at how these algorithms work and examine their useful-

ness as tools for cryptanalysis. In this section, we discuss some of the more relevant

procedures that fall under this class. The definitions and algorithms are based on

the material in [45]. For a more in-depth analysis on lattice-based cryptanalysis, we

refer the reader to the cited source.

The main goal of the lattice-reduction algorithms is to process a given lattice

basis and produce a reduced basis for the same lattice. The reduced basis would

contain vectors that are shorter than the ones in the initial basis. The quality of the

48

resultant basis (how orthogonal the basis vectors are to each other) can be measured

using the Gram-Schmidt Orthogonalization procedure (see Section 2.2).

Definition 4.4.1 (Reduced Basis). A lattice basis B = (b1, ..., bn) is considered

reduced if both of the following conditions are satisfied:

a) σi,j =
〈bi,b̃j〉
〈b̃j ,b̃j〉 ≤ 1/2 ∀ 1 ≤ i < j ≤ n

b) ||b̃i|| ≥
`

δ − σ2
i,i−1

˘

||b̃i−1||2 ∀ 1 < i ≤ n and for some 1
4
< δ ≤ 1

4.4.1 Gauss’ Algorithm

Gauss’ Algorithm [32] is one of the earliest algorithms used to solve the exact SVP

for lattices with dimension n = 2. It essentially reduces, in polynomial time, a basis

of a two-dimensional lattice in the l2 norm to find the two successive minima (the

two shortest vectors in the lattice).

Algorithm 4.4.1 presents the procedure. The algorithm takes as input two linearly

independent vectors a,b, which represent components of a basis B for some lattice

L(B), and returns a reduced basis a′,b′ for the lattice. The algorithm iteratively

replaces the length of the longer vector in the basis with another shorter basis vector

in the lattice. The process halts when this vector becomes shorter than the second

basis vector, or equivalently, when σ ≤ 1/2. Note also that a 2-dimensional basis

B = (a,b) is considered reduced if ||a + b||≥ ||a||, ||b||.

4.4.2 LLL Algorithm

The Lenstra-Lenstra-Lovász (LLL) algorithm [49] is a polynomial time lattice basis

reduction algorithm whose goal is to approximately solve the shortest vector problem

(SVPγ) for γ = (2/
?

3)n.

Algorithm 4.4.2 shows the procedure for integer lattices and can be extended, if

necessary, to work with rational lattices. The input to the algorithm is a non-reduced

49

Algorithm 4.4.1 Gauss’ Algorithm

1: procedure Gauss-Reduction(a,b)
2: if ||a|| < ||b|| then . a is the longer vector
3: Swap a and b
4: end if
5: while ||a|| > ||b|| do

6: σ =
〈a,b〉
〈b,b〉

. Compute σ that minimizes ||a− σb||

7: a← a− σb
8: Swap a and b
9: end while
10: return (a,b)
11: end procedure

basis B = (b1, ...,bn) of an n-dimensional full rank lattice and a parameter δ that

ranges from 1
4

to 1. The output of this algorithm is a δ-LLL reduced basis.

The LLL algorithm is at its core a relaxed application of Gauss’ algorithm for

higher dimensions. Whereas in Gauss’ algorithm we ensure that the second condition

of Definition 4.4.1 is satisfied for δ = 1 (i.e. exactly), it would take far too long

to reach this desired result for higher dimensions. Thus, δ acts as a relaxation

parameter that can be reduced to accommodate a polynomial running time at the

cost of accuracy.

Each loop of the LLL algorithm contains three stages, which are repeatedly exe-

cuted until every two consecutive basis vectors satisfy the second condition of Defi-

nition 4.4.1. In each loop, we find the GSO vectors of the basis vectors, replace the

basis vectors with shorter ones (just like the Gauss’ Algorithm), and test the condi-

tion to check if they pass as reduced basis vectors (using their GSO counterparts).

While the worst-case running time of the algorithm is exponential in the dimension of

the lattice, it has been shown [31] that the time complexity of the procedure for most

lattices, while still exponential, is nevertheless below the conjectured worst-case.

The applications of the LLL algorithm are numerous and diverse. Apart from

being able to solve approximate SVP, the algorithm was also found to be useful in

factoring integer and rational polynomials (as was intended by the authors of LLL),

50

Algorithm 4.4.2 LLL Algorithm

1: procedure LLL(B, δ)
2: reduced← false
3:
4: while reduced = false do
5: for i = 1 to n do . Gram-Schmidt Orthogonalization
6: b̃i = bi
7: for j = 1 to i− 1 do

8: b̃i = b̃i − σi,jb̃j . σi,j =
⌈ 〈bi,b̃j〉
〈b̃j ,b̃j〉

⌋
9: end for
10: end for

11:
12: for i = 2 to n do . Basis Reduction
13: for j = i− 1 down to 1 do
14: bi = bi − σi,jbj
15: end for
16: end for

17:
18: reduced← true
19: for i = 2 to n do . Test and Exchange
20: if ||b̃i|| <

`

δ − σ2
i,i−1

˘

||b̃i−1||2 then
21: Swap bi and bi−1

22: reduced← false
23: Exit loop
24: end if
25: end for
26: end while

27:
28: return B
29: end procedure

performing integer linear programming in bounded dimensions, finding integer rela-

tions for a set of real numbers, and solving a variety of number theoretic problems

[70] including finding solutions to quadratic equations and computing greatest com-

mon divisors. Moreover, we shall demonstrate in the next section how the LLL is

used as a sub-procedure to solve the approximate closest vector problem.

More importantly, in this context, the LLL algorithm has also be used as a crypt-

analytic tool. In particular, it can be used to break knapsack-based cryptosystems as

demonstrated, for example, in [69] where an attack is mounted against the Merkle-

Hellman public-key knapsack-based scheme. It can also be used to break an RSA

scheme that uses low public exponents [26].

51

4.4.3 Nearest Plane Algorithm

Proposed by Babai [8], the nearest plane algorithm approximately solves, in polyno-

mial time, the closest vector problem (CVPγ) with an approximation factor γ that

is exponential in the lattice dimension n.

Algorithm 4.4.3 shows the procedure for γ = 2n/2. The algorithm accepts a

lattice basis B and a target vector t. The output is a vector v ∈ L(B) such that

||v − t||≤ 2n/2||x − t|| ∀ x ∈ L(B). A tighter approximation factor of γ = (2/
?

3)n

can be achieved by appropriate modification of the parameters.

Algorithm 4.4.3 Babai’s Nearest Plane Algorithm

1: procedure Nearest Plane(B, t)
2: B← LLL(B, 3/4)
3: for i = 1 to n do . Gram-Schmidt Orthogonalization
4: b̃i = bi
5: for j = 1 to i− 1 do

6: b̃i = b̃i − σi,jb̃j . σi,j =
⌈ 〈bi,b̃j〉
〈b̃j ,b̃j〉

⌋
7: end for
8: end for

9:
10: u← t
11: for i = n down to 1 do

12: u← u− λibi . λi =
⌈ 〈u,b̃j〉
〈b̃j ,b̃j〉

⌋
13: end for
14: v← t− u
15: return v
16: end procedure

52

5

LPN Algorithms

In this section, we discuss the design and implementation of some of the existing

solutions to the LPN problem and suggest hybrid algorithms that are built on ideas

from several previous efforts that tackle this problem. While the main focus of this

chapter is to propose improvements to the BKW algorithm, we also examine other

possible independent, but related, solutions that have potentially useful practical

applications. In hopes of building upon previous work, we strive to enhance our

understanding of the underlying complexity of the studied solutions by contrasting

the algorithms’ individual and comparative performance using different parameters.

Comparisons shall be made between the different algorithms in terms of time com-

plexity and number of queries by providing experimental data to support the analysis.

5.1 Adversary Definition

We will examine and analyze the security of the LPN problem (formally defined in

Section 3.5) in terms of the computational power of a given adversary. Therefore, we

first fully define the adversary’s goals and capabilities. This will give us a clear vision

of the algorithms’ privileges and limitations and enable us to establish a more suitable

53

and balanced comparison between the different techniques that we will discuss.

An LPNk,η adversary, A, in this setting, is one whose goal is to break the scheme

by recovering s ∈ Zk2 given the set of uniformly random examples A = (a1, ..., an)

and their corresponding noisy labels z = (z1, ..., zn) supplied by oracle Πs,η. Each

example ai is represented as a column vector in A. Since we are trying to solve an

NP-hard problem (and assuming P 6= NP), A is permitted to exercise oracle Πs,η in

an experiment using sub-exponential number of queries q in sub-exponential amount

of time t. At the end of the experiment, A is expected to present its guess of s

regardless of the decisiveness of this guess.

An adversary, A, that runs in time t, makes q queries to oracle Πs,η, and uses

at most µ amount of memory is said to (t, q, µ, ε)-solve an instance of the LPNk,η

problem if:

Pr[s← {0, 1}k : AΠs,η(1k) = s] ≥ ε(k) (5.1)

When discussing the algorithms in this section, we will denote x as being the

adversary’s output or ”guess” of s. In order to solve the LPN problem, A should

output x such that it is equal to s with high probability. Given that η is the proba-

bility of error, we will refer to σ = 1
2
− η as the bias. Therefore, since the probability

of error can be written as η = 1
2
− σ, we can also write the probability of correct-

ness as (1 − η) = 1
2

+ σ. Using Hoeffding Bounds, we can determine that the lower

bound on the number of equations needed to correctly find s with high probability is

n = O(k/σ2) [19]. Clearly, the adversary’s task of recovering s becomes easier as the

bias increases (η decreases). In fact, if η = 0, the problem reduces to solving a system

of n = O(k) linear equations using Gaussian elimination, a poly-time solution.

While most of the algorithms discussed in this chapter have comparable asymp-

totic performance, we will experimentally demonstrate how some offer better practi-

cal results than others in a concrete setting. For example, 2O(k/20) is a better bound

54

than 2O(k/log k) for certain values of k especially if the hidden constants manifest as

significant contributing factors.

5.2 BKW Algorithm

The BKW algorithm [19] was the first algorithm designed to solve the LPN problem

in sub-exponential time and number of queries: 2O(k/log k), where k is the size of the

unknown vector s. In this section, we discuss the underlying concepts used in the

design of the algorithm to achieve the aforementioned complexity.

5.2.1 Noise Amplification

The BKW algorithm makes use of linear combinations as a means to reduce the

number of equations and obtain the target unit vectors. This leads us to consider

how the error is amplified as we add several noisy examples.

For any i, let ai ∈ Zk2 be an example and bi = 〈ai, s〉 represent its corresponding

label. We will let (ai, zi) denote a tuple that represents an example and its corre-

sponding noisy label (i.e. zi = bi⊕ 1 with some error probability η). When we apply

the addition operator to any two tuples (ai, zi) and (aj, zj), we linearly combine them

to get the resultant tuple (ar, zr) = (ai⊕ aj, zi⊕ zj). In this case, zr will be the true

label of both combined equations if either both zi and zj are corrupted or both are

correct. The following lemma provides the probability of correctness in the general

case (for n examples).

Lemma 5.2.1 (Noise Amplification [19]). Given n examples a1, ...,an and their cor-

responding labels z1, ..., zn, where each zi = 〈ai, s〉⊕1 with probability η, the probability

that the linear combination of the examples is correct is given as Pr[〈a1 ⊕ ...⊕ an, s〉 =

z1 ⊕ ...⊕ zn] = 1
2

+ 1
2
(1− 2η)n.

Proof. The base case, n = 1, results in probability of correctness Pr[〈a1, s〉 = z1] =

1
2

+ 1
2
(1−2η) = 1−η, as expected. Since the examples a1, ..., an are uniformly drawn

55

at random, they can be considered independent of each other. By induction, we show

the following:

Pr[〈a1 ⊕ ...⊕ an, s〉 = z1 ⊕ ...⊕ zn]

= Pr[〈a1 ⊕ ...⊕ an−1, s〉 = z1 ⊕ ...⊕ zn−1].P r[〈an, s〉 = zn]

+ Pr[〈a1 ⊕ ...⊕ an−1, s〉 6= z1 ⊕ ...⊕ zn−1].P r[〈an, s〉 6= zn]

=

ˆ

1

2
+

1

2
(1− 2η)n−1

˙ˆ

1

2
+

1

2
(1− 2η)

˙

+

ˆ

1− 1

2
− 1

2
(1− 2η)n−1

˙ˆ

1− 1

2
− 1

2
(1− 2η)

˙

=
1

4

`

1 + (1− 2η)n−1 + (1− 2η) + (1− 2η)n
˘

+
1

4

`

1− (1− 2η)n−1 − (1− 2η) + (1− 2η)n
˘

=
1

4
p2 + 2(1− 2η)nq =

1

2
+

1

2
(1− 2η)n

5.2.2 Sample Definitions

In the context of the BKW algorithm, we will be treating each labeled example a

drawn from oracle Πs,η as a set of a blocks, each of size b bits, where a = dk/be.

Thus, for each example, group 1 contains bits 1 to b, group 2 contains bits b + 1 to

2b, and so on. As it is, the probability that a’s label is incorrect is η.

Definition 5.2.1 (Sample Set). Let a, b be some positive integers such that k = ab.

An (n, k, i, p)-sample set is a set of n k-bit examples whose last ib bits are guaranteed

to be all zeros and whose labels are corrupted with probability p.

The following Lemma is derived from Lemma 5 in [19].

56

Lemma 5.2.2 (Sample Set Derivation). Given an (n, k, i, p)-sample set, we can

construct in time O(n) an (n′, k, (i+ 1), p′)-sample set where each example in the set

has zeros for its last (i+ 1)b. The size of the group is n′ ≥ n−2b, and the probability

of error is given by p′ = 1
2
− 1

2
(1− 2p)2.

Proof. Let {(a1, z1), ..., (an, zn)} be a (n, k, i, p)-sample where each example aj has

zeros in its last ib bits (i.e. bit groups [a− i+ 1, a] for i > 0), and its corresponding

label zj is corrupt with probability p.

The examples can be categorized into separate partitions, in time O(n), based on

the bit pattern in bit group (a− i). Since we are categorizing on b bits, the number

of partitions is at most 2b, each partition containing on average n/2b examples.

Next, in every partition, we select at random an example ar, add it (mod 2) to

every other example in the partition (including the labels), then discard it. Since

all the examples in one partition have the same bit pattern in group (a − i), this

process will zero out the bits in that group: bits [(a − i − 1)b + 1, (a − i)b]. The

examples will then have all zeros in their last (i + 1)b bits. Furthermore, since we

are discarding at most one example per partition, the total number of examples n′

after this process is at least n − 2b. Using Lemma 5.2.1, the error probability of

a resultant vector after adding two noisy examples (having error probability p) is

1− (1
2

+ 1
2
(1− 2p)2) = 1

2
− 1

2
(1− 2p)2.

5.2.3 Design

The main idea of the algorithm is to start with a (m, k, 0, η)-sample from oracle

Πs,η and derive a (m− (a− 1)2b, k, (a− 1), p′)-sample A′ by iterating Lemma 5.2.2

(a − 1) times. Each example a′ in A is a result of combining 2a examples using

2a−1 linear combinations. Consequently, the labels will be incorrect with probability

p′ = 1
2
− 1

2
(1−2p)2a−1

. The labeled examples in A′ will have zeros in the last (a−1)b

bits and arbitrary values in the first b bits. Within A’, we search for an example

57

a′j = uj, where uj is a unit vector with a 1 in position j, and estimate bit j of x

by setting xj = zj. The number of vectors uj, for any j, that will exist in A′ is on

average
1

2b
× (m− (a−1)2b), so m must be selected such that this number is at least

1. By repeating this sample reduction process q = poly((1 − 2η)−2a , b) times with

new set of labeled examples each time, we can recover the first b bits of x with high

probability by taking the majority vote. To recover the rest of the bits of x, we run

the procedure q times for groups α = (2, ..., a) of x. The only difference is that, for

each example, we zero out the bits in all the other groups except group α.

Algorithm 5.2.1 illustrates an implementation-specific version of the BKW algo-

rithm which includes lower-level details that will aid in understanding the subtle

performance issues that may arise in practice. Furthermore, we note that concrete

values of parameters a, b, and q are specified. These specific values will be used

to demonstrate how the algorithm works in detail. While not necessarily optimal

in all cases, these values were found to be sufficiently representative of the aver-

age performance of the algorithm during experimentation. Nevertheless, to ensure

completeness, we also present tests for various values of b in Section 5.9.3.

After setting the values of a, b, and q, we start by selecting the index of the

target group α (the set of b bits of s to estimate) at the beginning of the target

loop (line 6). The estimation loop (line 10) is repeated at least q times per target

group to acquire the votes necessary to estimate group α of x with high probability.

Each estimation loop consists of drawing m = a2b new labeled examples from A

and storing them in A′. This is the initial (m, k, 0, η)-sample. We then successively

apply Lemma 5.2.2 on every group (categorize and merge) except the target group

to obtain the desired (2b, k, (a− 1), p′)-sample. At the end of an estimation loop, we

estimate the target group based on uj vectors and accumulate the votes for each bit

j in the target group α (line 24). For bit j of group α, the number of votes for 1 are

58

recorded v1(j) and the number of votes for 0 are recorded in v0(j). After at least q

estimates, we hypothesize the target group via a straightforward majority vote (line

30), so for each bit j, if v1(j) > v0(j), xj is set to 1 else it is set to 0.

Algorithm 5.2.1 BKW algorithm

1: procedure BKW(A, z, η)
2: a← 1

2
log2 k

3: b← dk/ae
4: q ← b · (1− 2η)−2a

5:
6: for α = 1→ a do . Target Loop
7: Initialize votes array v
8: for γ = 1→ q do . Collect q votes
9: estimated← false
10: while estimated is false do . Estimation Loop
11: m← a2b
12: A′ ← subset(A, z,m)
13: c← a
14: repeat . Combination Loop
15: if c 6= α then

16: {Qj}2b−1
j=0 ← categorize(A′, 1 + b(c− 1), bc) . see Alg. B.0.1

17: for j = 0 to 2b − 1 do
18: Qj ← merge(Qj) . see Alg. B.0.2
19: end for
20: A′ ←

⋃2b−1
j=0 Qj

21: end if
22: c← c− 1
23: until c = 0
24: (v0,v1)← estimate(A′, α, b) . see Alg. B.0.3
25: if (v0(i) + v1(i)) ≥ γ ∀ i then
26: estimated← true . All votes accounted for
27: end if
28: end while
29: end for
30: xα = hypothesize(v0,v1, α) . Hypothesize partial solution
31: end for

32:
33: x← (x1||...||xa) . Reconstruct key
34: return x
35: end procedure

5.2.4 Analysis

We analyze Algorithm 5.2.1 to find an upper bound on the time complexity T ,

number of required queries to the oracle Q, and the amount of memory M required

59

to run the procedure.

Proposition 5.2.3. For any fixed error rate η, the BKW algorithm solves the LPN

problem with time complexity 2O(k/log2 k).

Proof. The number of estimation loops per target group is at least q = b(1− 2η)−2a ,

each loop taking time O(a2b + 2b) = O(a2b) due to the categorization and merging

procedure implied by the combination loops and the estimation process. We may

need to repeat each individual estimation loop more than once if estimated = false

at the end of the loop. This happens when we cannot estimate bit j of the target

group α due to the absence of vector uj in the resultant sample set. Thus, each

estimation loop is repeated at most a times to obtain the desired uj vectors for each

bit j of the target group. We repeat the q estimation loops for each of the a groups.

Hence, the total time complexity is given by:

T (a, b, η) = O(a× aq × a2b) = O
`

a3b2b(1− 2η)−2a
˘

(5.2)

Setting a = 1
2

log2 k and b = 2k/log2 k, we get the following result:

T (k, η) = O

ˆ

2O(k/log2 k) × k

4
(log2 k)2 × (1− 2η)−

?
k

˙

(5.3)

Proposition 5.2.4. For any fixed error rate η, the BKW algorithm solves the LPN

problem using 2O(k/log2 k) number of queries.

Proof. For each of the q estimation loops, we require a2b new examples from the

oracle. Since we execute each estimation loop at most a times, the number of new

queries needed per target group is a22bq. For all a groups, the number of queries

needed is a32bq. Setting a = 1
2

log2 k and b = 2k/log2 k,

Q(k, η) = O(a3b2b(1− 2η)−2a) = O

ˆ

2O(k/log2 k) × k

4
(log2 k)2 × (1− 2η)−

?
k

˙

(5.4)

60

Proposition 5.2.5. For any fixed error rate η, the BKW algorithm solves the LPN

problem with O(a2b) amount of memory.

Proof. The space complexity is dominated by the combined size of A and z, which

is (k + 1) × n. Knowing that we require Q(k, η) examples, we can ask the oracle

in advance to supply n = Q(k, η), which leads to space complexity of O(kn) or

O(ka32b(1 − 2η)−2a). However, we can significantly reduce the amount of memory

necessary by drawing examples on demand. That is, we ask the oracle directly each

time we need a new set of a2b examples instead of having all the necessary examples

at the start of the procedure. This reduces the space complexity to O(a2b). After

the examples are categorized, combined, and used for estimation at the end of an

estimation loop, they are discarded to make room for a new set of examples.

5.3 Hash Collision

A slightly different, perhaps more general, approach to the BKW algorithm exploits

the birthday paradox to find unit vectors among a series of linear combinations

between any pair of vectors. To implement this solution, we will use a hash table

(see Section 4.2.1) to store the examples.

The hash function H : {0, 1}k → Zm uses the bit pattern of the example as

the key, and the hash value indicates the location i ∈ [1,m] in the hash table to

which the example will be inserted. We assume that H is modeled as a Random

Oracle Model [12] and that collisions are rectified using a linked list. To avoid severe

performance degradation due to long linked lists, one can use universal hash functions

to implement a perfect hashing mechanism. One may also minimize the amortized

cost by judiciously increasing the size of the hash table at regular intervals as the

number of elements in the table increase. We consider the latter solution in our

61

implementation.

5.3.1 Design

Algorithm 5.3.1 presents the procedure in detail. We notice that the algorithm’s

behavior does not depend on the value of η. Instead, the error rate indirectly affects

the complexity by influencing the size of the matrix A presented as an input to the

algorithm; the higher the error rate, the more examples will be requested from the

oracle. To begin, an augmented matrix A’ is created containing both the examples

and their labels. We also initialize the set Q, a hash table that will hold the examples

after they are hashed using H.

The while-loop in lines (7-23) is repeated until we run out of examples in A′.

Within each loop, we select a random example a′r from A′, flip its first bit and check

if this new vector is present in the hash table. If not, we flip the second bit of a′r (the

first bit is reverted back to its original value) and try again with this new vector. If

none of the bit-flipped vector modifications provide a match in the hash table, we

insert a′r into Q. However, if we happen to find a match for a′r with bit j flipped, then

this means we have found a vector b residing within Q whose Hamming distance

to a′r is exactly one. Linearly combining a′r and b will result in unit vector with a

1 in position j. We estimate xj as being equal to the combined labels of both a′r

and b before we delete vector b from Q. To increase the probability of successfully

recovering the x, we find at least q = (1− 2η)−2 such estimates per bit of the key.

62

Algorithm 5.3.1 Hash Collisions

1: procedure Hash Collisions(A, z)
2: (k, n)← Dim(A)
3: Build (k + 1)× n matrix A′ = {a′i}ni=1, where a′i = (ai||zi)
4: Q← {}
5: v0(i) = 0 ∀ i = [1, k]
6: v1(i) = 0 ∀ i = [1, k]
7: while |A′|> 0 do
8: a′r ← randomSelect(A′)
9: A′ = A′ − a′r
10: for i = 1 to k do
11: b← a′r ⊕ ui . ui is the unit vector with 1 in position i
12: if H(b) ∈ Q then
13: q← a′r ⊕ b
14: if qk+1 = 0 then . Label of (a′r ⊕ b)
15: v0(i) = v0(i) + 1
16: else
17: v1(i) = v1(i) + 1
18: end if
19: end if
20: Q← Q− b
21: end for
22: Q← Q ∪ a′r
23: end while
24: x← hypothesize(v0,v1)
25: return x
26: end procedure

5.3.2 Analysis

Due to the birthday paradox, we begin encountering collisions between vectors with

Hamming distance 1 with probability 0.5 when the number of elements in Q reaches

approximately 2k/2. For each of the examined examples, we need to check at most k

different possibilities for collisions. Since we need at least q more different estimates

for each of the k bits, and assuming that the hashing operation takes O(1) time, this

results in the following running time:

T1(k, η) = O(2k/2 +O(1)× k2q) = O
`

2k/2 + k2(1− 2η)2
˘

(5.5)

The space and query complexity is also the same. We can improve the time and

space complexity by using the generalized birthday problem [74] solution described

in Section 4.2.2. Using this extension, we can find kq collisions (or solutions to the

63

k T1 T2

32 68736 6.8× 107

64 4.3× 109 1.3× 109

80 1.1× 1012 4.6× 109

128 1.8× 1019 1.1× 1011

256 3.4× 1038 1.2× 1014

512 1.2× 1077 1.9× 1019

Table 5.1: Time Complexity for the Hashing Algorithm using η = 0.45

t-sum problem) by incrementally constructing t = 2k/log2 (kq) lists of examples drawn

from the oracle, each of size O
`

kq2k/(1+log2 t)
˘

, in time and space O(tkq × 2k/log2 t),

which for any fixed η is an asymptotically more preferable upper bound than the

complexity in Equation 5.5. Thus, the updated time and space complexity would

be:

T2(k, η) = O(kq × 2k/log2 (kq) × 2log2 kq) (5.6)

Table 5.1 provides a numerical comparison of theoretical performance T1 and T2 for

different values of k using η = 0.45 so q = 100.

5.4 Fast Correlation Attacks

The algorithms described in this section harvest their gain in speed by employing

techniques commonly used in fast correlation attacks against stream ciphers whose

pseudorandom keystream outputs are generated by a non-linear combination of linear

feedback shift registers (LFSRs) (see Figure 5.1). These attacks attempt to find the

linear correlation between the unknown internal state of the LFSRs and the known,

but noisy, output of the non-linear combination generator. By discovering such a

relationship, one can then find, with non-negligible bias, the output of the registers

and even succeed in reconstructing the initial state of the LFSRs. Some of the most

notable attacks are discussed in [60, 54, 61] along with their related performance and

design improvements.

64

LFSR 1

LFSR k

.

.

.
G

xi,1

xi,k

zi

mi

ci = zi + mi

Figure 5.1: The outputs of the LFSRs (x1, ..., xk) at state i is combined using some
non-linear function G to create the next bit in the keystream

5.4.1 FMICM Algorithm

Proposed by Fossorier et al. [30], the FMICM algorithm (named after the original

authors) solves the LPN problem by utilizing sub-components of an advanced fast

correlation attack [62]. In particular, the algorithm employs sample decimation,

linear combination, and hypothesis testing to find the bits of the key.

Design

The whole procedure is detailed in Algorithm 5.4.1. Before the process proper begins,

the parameters b ≤ k, h ≤ (k−b), w ≥ 2 must be specified. In the sample decimation

phase, we search for examples in the given matrix A that have all zeros in their last

b bits and store these examples in a decimated matrix A′ = (a′1, ..., a
′
n′) of size

(k + 1) × n′ where the first row of A′ contains the labels of the examples. Since

the examples in A are drawn at random from a uniform distribution, the expected

number of examples in A′ is n′ =
n

2b
.

In the linear combination phase, we try all possible linear combinations of c ≤

w examples from A′ to find a resultant vector with weight 1 in positions [h +

1, k − b] (i.e. only a single 1 in these positions). The vector, p, produced by the

nextCombination(n′, c) function provides the indices (i1, ..., ic) of the next c exam-

ples out of n′ examples to linearly combine. The function linearCombination(A′,p)

65

simply adds (mod 2) the examples (columns) in A′ whose indices are given by p to

produce the resultant vector r = a′i1 ⊕ ...⊕ a′ic = (r0, ..., rk) . The bits r in position

[0, h] could take on any arbitrary value. For each j ∈ [h + 1, k − b], we locate and

store in matrix Qj at least q such resultant vectors whose jth bit is equal to 1.

In the hypothesis phase, for each possible value of the first h bits of the un-

known vector x we estimate the jth bit of x based on the majority vote evaluation

of (1||x)Qj = 0, where the 1 is prefixed to x so that the label is included. When

performing this evaluation, we note that the last b bits of the examples (columns)

in Qj are all zeros, and the bits in position [h+ 1, k− b] have weight 1 (the location

of that 1 being in position j). Thus, the bits (xh+1, ..., xk)\xj are of no consequence

in the evaluation of (1||x)Qj since they will always be multiplied by a zero in the

corresponding example bit. Only the hypothesized bits (x1, ..., xh) will affect the

estimation of xj. To test if a given hypothesis (x1, ..., xk−b) is acceptably valid, we

compute the Hamming weight of (1||x)A′ and check if we get a value that is close to

the expected weight of the error vector e. If the check passes, we add this partially

estimated x to the set L of most likely candidates for the true solution.

Once we have finished iterating over all possible hypotheses, we use the vectors

in L as the starting point in estimating the last b bits of x. We repeat Phase 2 to

generate weight 1 vectors in positions [k − b+ 1, k], repeat Phase 3 to estimate bits

(xk−b+1, ..., xk) using the same procedure that was performed for the previously esti-

mated (k−b) bits, and update L accordingly. The fully estimated x can be recovered

by testing the most probable solutions and deciding which candidate solution yields

a vector y = (xA ⊕ z) with a Hamming weight that is as close to zero as possible

(i.e. most of the equations are correctly evaluated using this solution).

66

Algorithm 5.4.1 FMICM Algorithm

1: procedure FMICM(A, z, η)
2: Set algorithm parameters b, h, w
3: (k, n)← Dim(A) . Dimensions of A
4: q ← (1− 2η)−2w

5:
6: A′ ← {} . Phase 1: Decimation
7: for i = 1 to n do
8: if ai(j) = 0 ∀ j ∈ [k − b+ 1, k] then
9: A′ ← A′ ∪ (zi||ai) . Build (k + 1)× n′ matrix A′

10: end if
11: end for

12:
13: Qj ← {} ∀ j ∈ [h+ 1, k − b] . Phase 2: Linear Combination
14: for c = 2 to w do
15: while (p← nextCombination(n′, c)) 6= null do
16: r← linearCombination(A′,p)

17: if
∑k−b

j=h+1 rj = 1 then

18: u← findIndexOfOne(r, h+ 1, k − b)
19: Qu ← Qu ∪ r . Categorize results
20: end if
21: end while
22: end for

23:
24: L← {} . Phase 3: Hypothesizing
25: for i = 0 to 2h − 1 do
26: for j = (h+ 1) to (k − b) do
27: xh ← (x1, ..., xh) = i
28: x← (xh||xh+1, ..., xk)
29: Estimate xj by evaluating (1||x)Qj = 0
30: end for
31: if wt((1||x)A′) < ηn′ then
32: L← L ∪ x
33: end if
34: end for

35:
36: Using L, repeat Phases 2 and 3 to estimate bits xj for j = [k − b+ 1, k]
37: x← minx∈L wt(xA⊕ z)
38: return x
39: end procedure

Analysis

The decimation phase has a time complexity of O(n) because we need to search all

the examples and identify vectors with all zeros in their last b bits. While it is entirely

possible that it could be the dominant factor when computing the total complexity,

67

the authors argue that the decimated matrix A′ can be pre-computed during sample

collection, and can thus be disregarded.

The linear combination phase has a complexity of O
´

`

n′

w

˘

¯

per-bit due to the fact

that the last iteration in the loop of line 14 (c = w) will be the dominant factor in

this phase. However, using the approach in [25], we can reduce this time complexity

to O
´

`

n′/2
w/2

˘

¯

for each bit that must be estimated.

The naive time complexity of the hypothesis phase (shown in lines 24-33) is

O(2hq) for each bit that must be estimated since we need to evaluate the equations

in Qj for each possible hypothesis of the first h bits, where |Qj|= O(q) for any j. We

can improve the efficiency of this phase by instead applying the Fast Walsh Transform

(see Section 4.3) to evaluate the equations and find the best estimate of xj, which

effectively reduces the work to O(2h log q). Since q is usually set to (1− 2η)−2w, we

can write the complexity as O(2hw log (1− 2η)−2).

When we estimate the last b bits of x, we merely repeat Phases 2 and 3 to solve a

smaller variation of the same problem. Thus, the complexity (per-bit) of each phase

remains the same for this second, and last, iteration of the algorithm. We can write

the total complexity of the entire process as:

T (n, k, b, h, w, η) = k ×O
ˆˆ

n/2b+1

w/2

˙

+ 2hw log (1− 2η)−2

˙

(5.7)

The original paper describes how one may find the optimum value of b and h to

minimize the time and space complexity of the procedure. While w can be seen as a

contributing factor in this determination, the authors have noted that the selection

of w does not greatly affect the performance. In fact, even when we set w = 2a−1

(where a is the number of groups, as is the case in the BKW algorithm), the FMICM

algorithm exhibits a better theoretical performance.

68

5.4.2 The Cube Root Method

A similar, more recent approach was devised by U. Wagner [75], which results in a

solution to the LPN problem in time 2O(k/3) and 2O(k/log k) number of queries assuming

that the bias σ = 1/poly(k).

Design

Once again, the process is divided into a decimation phase, a linear combination

phase and a hypothesis phase. The whole procedure is detailed in Algorithm 5.4.2.

Very much like the FMICM algorithm, the parameter b is used to determine the

number of low-order bits in the decimated examples that are all zeros (i.e. the last b

bits of the x are not significant in evaluating the equations in the decimated matrix).

The parameter h determines the number of bits of x that we wish to hypothesize

in Phase 3. The parameter w is an even integer that indicates the number of linear

combinations that must be performed.

In the sample decimation phase, we search for examples in the given matrix A

that have all zeros in their last b bits and store these examples in a decimated matrix

A′ = (a′1, ..., a
′
n′) of size (k + 1) × n′ where the first row of A′ contains the labels

of the examples. Since the examples in A are drawn at random from a uniform

distribution, the expected number of examples in A′ is n′ =
n

2b
. At the end of this

stage, all examples in A′ will have zeros for their last b bits.

The linear combination phase is divided into two parts. The first part (lines 13-

17) finds all w/2 linear combinations in A′ and stores the results in G. The number

of examples in G will be
`

n′

w/2

˘

. The examples in G will then be categorized into

groups based on the value of the bits [k− (b+h) + 1, k− b] using the same categorize

function that was used in the BKW algorithm. This will result in 2h groups, where

each group Qj contains on average C =

`

n′

w/2

˘

2h
examples. The second part performs

69

linear combinations between each different pair of examples for every group, saving

the results into a newly initialized G. The expected number of examples in G would

then be 2h×
`

C
2

˘

. At the end of this stage, all examples in G will have zeros for their

last (b+ h) bits.

In the hypothesis phase, we need to try all possible combinations of the first

k − (b+ h) bits of x in evaluating the equations in G. We can accomplish this task

efficiently by using the Fast Walsh Transform. Note that the hypothesis procedure is

performed on a set of vectors that are generated by adding w noisy examples, which

implies that the overall error rate has increased (see Lemma 5.2.1). After obtaining

the partially estimated x, we repeat the last two phases to recover the rest of x.

Analysis

The decimation phase, while optional, has a time complexity of O(n) because we

need to search all the examples and identify vectors with all zeros in their last b bits.

Assuming that this process is performed during sample collection, this overhead can

be disregarded.

The first part of the linear combination phase requires
`

n′

w/2

˘

= O((n′)w/2) opera-

tions to generate on average C =

`

n′

w/2

˘

2h
examples in each of the 2h groups. The second

part requires on average 2h×
`

C
2

˘

= 2h×O(C2) = O

ˆ

(n′)w

2h

˙

operations to generate

as many examples. Thus, the total work in this phase is O

ˆ

(n′)w/2 +
(n′)w

2h

˙

.

Using the Fast Walsh Transform, hypothesizing (k − b − h) bits using
(n′)w

2h

examples will yield a running time of O

ˆ

2k−b−h log
(n′)w

2h

˙

. We can write the total

70

Algorithm 5.4.2 Cube-Root Algorithm

1: procedure Cube-Root Algorithm(A, z, η)
2: Set algorithm parameters w, b, h
3: (k, n)← Dim(A)
4:
5: A′ ← {} . Phase 1: Decimation
6: for i = 1 to n do
7: if ai(j) = 0 ∀ j ∈ [k − b+ 1, k] then
8: A′ ← A′ ∪ (zi||ai) . Build (k + 1)× n′ matrix A′

9: end if
10: end for

11:
12: G = {} . Phase 2: Linear Combination
13: while (p← nextCombination(n′, w/2)) 6= null do
14: r← linearCombination(A′,p)
15: G← G ∪ r
16: end while
17: {Qj}2h−1

j=0 ← categorize(G, k − b− h+ 1, k − b)
18: G← {}
19: for j = 0 to 2h − 1 do
20: nj ← NoOfExamples(Qj)
21: while (p← nextCombination(nj, 2)) 6= null do
22: r← linearCombination(Qj,p)
23: G← G ∪ r
24: end while
25: end for

26:
27: L = {} . Phase 3: Hypothesis
28: η′ = 1

2
− 1

2
(1− 2η)w

29: for i = 0 to 2k−b−h − 1 do
30: xh ← (x1, ..., xh) = i
31: x← (xh||xk−b−h+1, ..., xk)
32: if wt((1||x)G) < η′n′ then
33: L← L ∪ x
34: end if
35: end for

36:
37: Using L, repeat Phases 2 and 3 to estimate bits xj for j = [k − b− h+ 1, k]
38: x← minx∈L wt(xA⊕ z)
39: return x
40: end procedure

71

complexity of the entire process as:

T (n, k, b, h, w, η) = O

¨

˚

˝

´ n

2b

¯w/2

+

´ n

2b

¯w

2h
+ 2k−b−h log

´ n

2b

¯w

2h

˛

‹

‚

(5.8)

5.5 LF2 Algorithm

In [51], two different and enhanced LPN algorithms were proposed. The first algo-

rithm, the LF1 algorithm modifies the last phase (hypothesis phase) of the BKW

algorithm to achieve a more efficient solution, and shall be discussed in more detail

in Section 5.8. The LF2 algorithm is a heuristic procedure based on the work in [74],

exploiting the birthday problem to solve an LPN instance using much less queries

than is required in BKW.

5.5.1 Design

The algorithm replaces the merge() function of Algorithm 5.2.1 with the procedure

shown in Algorithm 5.5.1. Instead of combining one example with all the other

examples in a group then discarding it, we linearly combine each different pair of

examples within a group to generate new examples. This allows us to increase the

number of examples we have for the estimate() function without increasing the noise

rate in the final set, thus lowering the upper bound on the number of required queries

to the oracle.

Algorithm 5.5.1 LF2 Combination Sub-Procedure

1: procedure Lf2-Combine(A)
2: A′ ← {}
3: (k, n)← Dim(A)
4: while (p← nextCombination(n, 2)) 6= null do
5: r← linearCombination(A,p)
6: A′ ← A′ ∪ r
7: end while
8: return A′
9: end procedure

72

5.5.2 Analysis

Let us define the following Lemma, a modified version of Lemma 5.2.2 to aid in the

discussion:

Lemma 5.5.1 (LF2 Sample Set Derivation). Given an (n, k, i, p)-sample set, we can

construct in time O(n2/2b) an (n′, k, (i+1), p′)-sample set where each example in the

set has zeros for its last (i + 1)b. The size of the group is n′ = O(n2/2b), and the

probability of error is given by p′ = 1
2
− 1

2
(1− 2p)2.

Proof. Let {(a1, z1), ..., (an, zn)} be a (n, k, i, p)-sample where each example aj has

zeros in its last ib bits (i.e. bit groups [a− i+ 1, a] for i > 0), and its corresponding

label zj is corrupt with probability p.

The examples can be categorized into separate partitions, in time O(n), based on

the bit pattern in bit group (a− i). Since we are categorizing on b bits, the number

of partitions is at most 2b, each partition containing on average n/2b examples.

Next, in every partition, we find all
`

(n/2b)
2

˘

different linear combinations in time

and save them in a new partition, discarding the original vectors. This takes total

time O(n2/2b) for all partitions. Since all the examples in one partition have the same

bit pattern in group (a − i), this process will zero out the bits in that group: bits

[(a−i−1)b+1, (a−i)b]. The examples will then have all zeros in their last (i+1)b bits.

The total number of examples n′ after this process is equal to
`

(n/2b)
2

˘

×2b = O(n2/2b).

Using Lemma 5.2.1, the error probability of a resultant vector after adding two noisy

examples (having error probability p) is 1− (1
2

+ 1
2
(1− 2p)2) = 1

2
− 1

2
(1− 2p)2.

Given an (a2b, k, 0, η)-sample from oracle Πs,η, we can derive a (n′, k, (a− 1), p′)-

sample by applying Lemma 5.5.1 (a − 1) times, where n′ = a2a−1
2b and p′ = 1

2
−

1
2
(1 − 2p)2a−1

. Next, we run the estimate() function of this new set to find the

desired unit vectors. The number of vectors uj, for any j, in the new set is on

73

average O

ˆ

1

2b
× a2a−1

2b
˙

= O(a2a−1
) as opposed to an average of 1 such unit vector

in the classic BKW algorithm. Thus, the number of required estimates q is reduced

by a factor of a2a−1
, which leads to query complexity of:

Q(a, b, η) = O(a× aq × a2b) = O

ˆ

a3b2b
(1− 2η)2a

a2a−1

˙

(5.9)

However, the time complexity remains about the same as the original BKW algorithm

since the work per estimate has increased:

T (a, b, η) = O(a× aq × a2a−1

2b) = O
`

a2b2b(1− 2η)−2a
˘

(5.10)

5.6 Random Sampling

The previous algorithms were all deterministic in the sense that after some bounded

number of queries to the oracle, the unknown vector x will be correctly recovered

by the adversary. In 2008, Carrijo at al. [24] proposed a simple probabilistic and

passive attack against the HB protocol. The attack tries to solve the underlying

LPN problem by randomly sampling a fixed-size subset of examples from the set

of all given noisy linear equations and then solves the system of linear equations to

recover the secret vector. If the sampled subset of equations happens to be error-free

(no corrupted labels), then we can successfully obtain the unknown vector. However,

if it appears that we have solved for an incorrect x, we try again with another round

of random sampling.

5.6.1 Design

Algorithm 5.6.1 depicts the procedure in detail. We note that the algorithm accepts

an integer λ ≥ 0. The procedure is composed of three main parts, which are repeated

until we are sure that the computed vector x is equal to s with high probability. The

first part is contained in the function randomSelect (line 5), which chooses c random

74

columns from A with their associated labels from z and stores them in matrix Q

and vector y. To ensure that, with high probability, linearly independent columns

are selected, we use λ to select slightly more columns than needed. The second part

(line 6) will find an estimate of the secret vector via Gaussian elimination using the

selected subset of columns and labels (Q, y). The gaussianElimination() function

will return a null vector if there exists either no solution or many solutions. The

third part (line 9) computes the Hamming distance between the set of all noisy labels

and the labels generated by the correct candidate x.

If x = s then wt(z′ ⊕ z) = wt(xA ⊕ (sA ⊕ e)) = wt(e). Since the expected

weight of the error vector is η.n and η ∈ [0, 1/2), then we expect that x is correct

with high probability if wt(e) < 0.4n. Conversely, if x 6= s, then the expected value

of wt(z′ ⊕ z) is 0.5n, which fails the check.

Algorithm 5.6.1 Random Sampling

1: procedure Random Sampling(A, z, λ)
2: c← k + λ
3: x← null
4: while x is null do
5: (Q,y)← randomSelect(A, z, c)
6: x← gaussianElimination(Q,y)
7: if x not null then
8: z′ ← xA
9: if wt(z′ ⊕ z) < 0.4n then
10: return x
11: end if
12: end if
13: end while
14: end procedure

5.6.2 Analysis

The amount of time that the algorithm takes is solely dominated by P , the expected

number of repetitions of the while-loop in line 4. This value can be derived from

the probability that we choose k correct examples out of a set n examples. This

75

probability can be written as:

pcorrect =

`

(1−η)n
k

˘

`

n
k

˘ (5.11)

Within each loop, a cost is incurred for performing matrix multiplication on the

whole sample set (line 8). Thus, the time complexity is given as:

T (n, k) = P × nk =
1

pcorrect
× nk =

`

n
k

˘

`

(1−η)n
k

˘ × nk (5.12)

The query complexity is given as Q = O(n) and the memory required is M = O(nk).

The time and query complexity are intricately tied together; finding the required

sample size is equivalent to finding n that minimizes T . Figure 5.2 shows the expected

value of n for different noise rates η and k. Since this is a theoretical average, practical

values of n were often observed to be higher to diminish the possibility of finding

duplicate, yet incorrect solutions. This increase, however, is not more than a small

polynomial factor of n.

5.7 Information Set Decoding

There exists other problems that have a structure similar to the LPN problem. In

fact, some are even a simple transformation away from being formulated as an in-

stance of LPN. The solutions developed for these problems can be considered as

suitably adaptable to be used for solving the LPN problem assuming that the time

invested for adaptation is polynomially bounded. One such closely related problem

is the computational syndrome decoding (CSD) problem. We will examine a rela-

tively efficient algorithm that solves the CSD problem and analyze the feasibility of

adapting this algorithm to work on LPN instances.

76

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
0

1000

2000

3000

4000

5000

6000

7000

8000

9000
ProbabilisticxOptimization

Errorxratex(η)

E
xp

ec
te

dx
nu

m
be

rx
of

xe
xa

m
pl

es
xfo

rx
M

in
im

um
xW

or
k

kx=x32
kx=x64
kx=x80
kx=x128

Figure 5.2: For k = 32, 64, 80, and 128 the figure illustrates the optimum value of
the sample size n that minimizes the time complexity for a given error rate

5.7.1 Computational Syndrome Decoding

An [n, k, d] binary linear code C is a subspace of the finite field Fn2 with dimension

k, a code length of n bits, and a minimum Hamming distance of d between any

two n-bit codewords c1, c2 ∈ C. A code is characterized by its generator matrix

G ∈ Fk×n2 , a basis that can be used to enumerate all possible codewords, i.e. C =

{xG : x ∈ Fk2}. Furthermore, we say that H ∈ F(n−k)×n
2 is a parity matrix for code

C if Hc = 0 ∀ c ∈ C. We can view the parity matrix as a way of detecting whether

a given point y is a correct codeword or not, which leads us to the definition of the

CSD problem.

Definition 5.7.1. Given a parity matrix H ∈ F(n−k)×n
2 and a vector t ∈ F(n−k)

2 , the

CSD problem can be solved if one can efficiently find a vector e ∈ Fn2 such that the

syndrome t = He.

The vector e represents the error vector and indicates how far an arbitrary point

77

y ∈ Fn2 is from a codeword in C. That is, y = c ⊕ e for some c. The syndrome

can then be represented as t = H(c + e) = He since we already know that Hc = 0.

Notice that if e is zero (there is no error), then the syndrome is also zero. Once we

obtain e, we can decode y and obtain c = y⊕ e. To ensure unique decoding of any

point, we define the error correction capability of a code as w = bd−1
2
c. Consequently,

this implies that wt(e), the weight of e, must not exceed w. Thus, we shall assume

that wt(e) = w in the worst case. We can easily see the parallelism between this

problem and the bounded decoding problem (Section 2.3.7).

One might think of solving the CSD problem as finding the subset of columns of

H whose linear combination results in the syndrome vector. For example, referring to

the hypothetical scenario in Equation 5.13, we notice that an error vector of weight 3

set to the indicated value will select columns 1, 3, and 4 from the parity matrix and

add them (mod 2) to get the desired result that is equal to the syndrome t. Hence,

this error vector is considered a solution to this problem.

H ∈ F5×7
2

¨

˚

˚

˚

˚

˝

0 1 0 1 1 0 1
0 0 1 0 0 1 1
0 0 0 1 1 1 0
0 1 1 0 0 1 1
1 0 1 0 1 0 0

˛

‹

‹

‹

‹

‚

e ∈ F7×1
2

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

1
0
1
1
0
0
0

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

=

t ∈ F5×1
2

¨

˚

˚

˚

˚

˝

1
1
1
1
0

˛

‹

‹

‹

‹

‚

(5.13)

The brute force approach is to try all possible
`

n
w

˘

combinations of column ad-

ditions (all possible weight-w e vectors). However, there are other algorithms that

will yield better performance using minimal amount of memory. One particular al-

gorithm is the information set decoding procedure, which was first introduced and

used by McEliece [56].

78

5.7.2 ISD Algorithm

The algorithm is composed of two main steps. Given the parity matrix H and the

syndrome vector t, the first step is to represent H in a form that allows for the

problem to be easier to solve. We achieve this task by first randomly permuting the

columns of H (and, hence, the bits in e), then applying Gaussian elimination on

the permuted H (and t) to mold it into its reduced row echelon format (Q|In−k),

where Q ∈ F(n−k)×k
2 and In−k is the identity matrix of size (n− k). We denote t′ as

the result of computing Gaussian elimination on t, and e′ the result of applying the

permutation (the same permutation applied on H) on e. We thus have the following

formatted matrix H′ after completion of the first part of the algorithm:

H′
¨

˚

˚

˚

˚

˝

|
|

Q | In−k
|
|

˛

‹

‹

‹

‹

‚

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

e′

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

=

¨

˚

˚

˚

˚

˝

t′

˛

‹

‹

‹

‹

‚ (5.14)

k (n− k)

The second part of the procedure aims to search for the error vector e′ that results

in a solution to the problem t′ = H′e′. Knowing the weight w of the error vector,

we set p < w, also referred as the subweight, to be some integer that represents the

conjectured weight of the first k bits of e′. The first k bits of e′ are column selectors

for Q. If e′j is 1 for some j ≤ k then this means that column j ≤ k of H′ (i.e. column

j of Q) is selected for linear combination. The goal is to find a linear combination

of p columns of Q where the resultant vector r = qi1 ⊕ ... ⊕ qip has a Hamming

distance to t′ of exactly w − p. If such an r exists, we set to 1 the bits j > k of

e′ that correspond to the unit vectors (columns) in In−k such that when these unit

vectors are added to r, we obtain exactly t′. Furthermore, since we now know that,

79

out of the first k bits of e′, only bits i1 to ip are set to 1, we have found e′.

If there is no such linear combination of p vectors that yield a resultant vector

with Hamming distance w − p to t′, this implies that the weight of the first k bits

of e′ is not p, and that our conjecture is incorrect. Hence, we repeatedly apply the

second part of the procedure with new permutations of H until we find an e′ that

satisfies the conditions. Once we find e′ we can reverse the permutation to obtain e.

5.7.3 Design

The ISD problem was chiefly studied in the context of a solution to the CSD problem.

However, we notice that this solution can also be applied to the LPN problem due to

LPN’s structural similarity to CSD. In particular, instead of focusing on recovering

x for some set of noisy linear equations, we can instead seek to discover the error

vector that was added to the labeled examples. If the error vector is discovered then

we can easily find x by applying Gaussian elimination to evaluate xA = (z⊕ e).

To transform an instance of an LPN problem to an instance of a CSD problem,

we have to find some matrix H ∈ Z(n−k)×n
2 such that HAT = 0, where A is the set

of examples that are acquired by an LPN oracle. In other words, H is the null space

of AT . The reasoning behind finding H is that when we multiply the labels z by H,

we get Hz = H(ATx + e) = HATx + He = He. The term Hz can then be referred

to as t, the syndrome, and the ISD algorithm can then be applied here.

Algorithm 5.7.1 describes the procedure in detail. Given the a set of labeled

examples corrupted with some probability η, we first transform the LPN instance

into a CSD instance by finding the corresponding H and t as described previously.

We then repeatedly execute the initialization and search parts of ISD until we obtain

the desired error vector.

Unlike in the CSD problem where we are given the weight of the error vector, in

the LPN problem, the exact weight is unknown but we know that it is on average ηn.

80

Hence, when testing the Hamming distance of a resultant vector, we try a range of

weights defined by parameters wmin and wmax centered around the average (expected)

weight. Furthermore, the number of linear combinations p is varied between pmin

and pmax to increase the probability of finding the partial weight of e′. Once we find

a resultant vector r that passes the Hamming weight check, we use v, which contains

the indices of the columns of Q used to create r, to set the corresponding bits in the

first part of e′. The rest of e′ is set using the indices of the columns of In−k. The

original e is recovered by reversing the permutation imposed on H, and the error

vector is then used to filter out the error in the labels z.

5.7.4 Analysis

The LPN transformation consists of finding the parity matrix (null space) of AT ,

which takes poly(n) time. The two main factors affecting the time complexity of

the procedure are P , the number of repetitions of the while-loop at line 8 and C,

the number of combinations that are required to be tested within each loop. The

former depends on the probability of obtaining p ones in the first k bits of e′ after a

permutation:

1

P
=

∑pmax
p=pmin

`

k
p

˘`

n−k
ηn−p

˘

`

n
ηn

˘ (5.15)

Thus, the total time complexity is given by:

T (n, k, η, p) = P ×
pmax∑
p=pmin

ˆ

k

p

˙

=

`

n
ηn

˘∑pmax
p=pmin

`

k
p

˘`

n−k
ηn−p

˘ ×
pmax∑
p=pmin

ˆ

k

p

˙

(5.16)

The query complexity is given by Q = O(n), and the required memory is M = O(nk).

Given some k and η, T can be minimized by selecting optimum values for n and

p. This will consequently give us the size of the required sample size. We will

consider, for simplicity, that p = pmin = pmax. Referring to Figure 5.3, we notice

81

Algorithm 5.7.1 Adapted Information Set Decoding

1: procedure Adapted ISD(A, z, η)
2: Set parameters wmin, wmax, pmin, pmax
3: (k, n)← Dim(A)
4: w ← [wmin, wmax]
5: (H, s)← transformLPN(A, z)
6:
7: e = null
8: while e is null do
9: (H,P)← permute(H) . Part 1 Initialization
10: (H′, s′)← rref(H, s)
11: (Q, In−k)← H′

12:
13: for p = pmin to pmax do . Part 2: Search and Test
14: while (v← nextCombination(k, p)) 6= null do
15: r← linearCombination(Q, t)
16: if hammingDistance(r, s′) = (w − p) then
17: e′j = 0 ∀ j ∈ [1, n]
18: for i = 1 to p do . Set first k bits of e′

19: e′ti = 1
20: end for
21: g← r⊕ s′

22: for i = (k + 1) to n do . Set the rest of the bits of e′

23: e′i = gi
24: end for
25: e = reversePermute(e′,P)
26: z′ = (z⊕ e)
27: x = gaussianElimination(A, z′)
28: return x
29: end if
30: end while
31: end for
32: end while

33:
34: end procedure

that, even for different values of p, the performance stabilizes at a minimum after

n = poly(k) number of examples. Very much like the Random Selection algorithm,

a constant surplus of examples should be supplied in practice to avoid reaching

duplicate solutions that do not match the true solution.

Figure 5.4 shows how the optimum value of p is determined. Based on the left

figure (1/P vs. p), we state a couple of intuitively justifiable observations. Firstly, as

the error rate is increased, the values of p that yield, with non-negligible probability,

an error vector with weight p in its first k bits also increase. This is attributed to

82

0 200 400 600 800 1000 1200 1400 1600
8

9

10

11

12

13

14

15

16

17
kn=n80n Errorn=n0.10

Numbernofnsuppliednexamplesn(n)

E
xp

ec
te

dn
T

im
en

C
om

pl
ex

ity

0 200 400 600 800 1000 1200 1400 1600
22

24

26

28

30

32

34

36
kn=n80n Errorn=n0.25

Numbernofnsuppliednexamplesn(n)

E
xp

ec
te

dn
T

im
en

C
om

pl
ex

ity

pn=n0
pn=n1
pn=n2
pn=n3

Figure 5.3: For k = 80 and error rates η = 0.1 (left) and η = 0.25 (right), the time
complexity log T for p = [0, 3] is computed using different values of n.

the fact that higher error rates produce large weight error vectors, so finding an

error vector with a relatively small weight in its first k bits becomes highly unlikely.

Secondly, as the error rate rises, the standard deviation of the normal probability

distribution increases. This implies that high error rates tend to spread out the

probability of acquiring the desired error vector across more subweights p, making

it harder to find this vector. This second observation is corroborated in the right

figure (log T vs. p) where higher error rates depreciate the importance of selecting

the best p, since the time complexity becomes increasingly even across all p (line

gradient approaches 0).

5.7.5 ISD Improvements

Several enhancements to the ISD algorithm were proposed mainly to lower the time

complexity of finding the error vector. In [71, 50], the Search and Test exhaustive

step was replaced with a more efficient Meet-in-the-Middle approach. This approach

divides Q into two l×(k/2) sub-matrices Q1 and Q2, where l < (n−k). We then find

all p/2 linear combinations of the columns of Q1 and save them in list L1. Similarly,

we find all p/2 linear combinations of the columns of Q2 and save them in list L2.

83

0 10 20 30 40 50
0

20

40

60

80

100

120

140

Subweight=p

E
xp

ec
te

d=
T

im
e=

C
om

pl
ex

ity

0 10 20 30 40 50
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
k===80

Subweight=p

P
ro

ba
bi

lit
y=

th
at

=fi
rs

t=k
=b

its
=o

f=e
rr

or
=v

ec
to

r=
ha

ve
=w

ei
gh

t=p e===0.10
e===0.15
e===0.20
e===0.25
e===0.30

Figure 5.4: For k = 80 and different error rates e, the left figure illustrates the
probability distribution of 1/P over the subweight p. The right figure shows how

log T is affected by p for k = 80 and various error rates e

Next, we search for any two elements x ∈ L1,y ∈ L2 such that x = y⊕ t′l, where t′l

is the first l bits of t′. These pairs of elements specify the p chosen columns whose

linear combination exactly match the first l bits of t′. This matching process is called

collision decoding. For each such pair (x,y), we test if their full-sized constituents

(the columns that were used to create x and y) add up to form a resultant vector

that has a Hamming distance to t′ of exactly (w − p). Finally, if such a pair exists,

then we simply add the appropriate unit vectors in In−k to the resultant vector to

obtain an exact match to t′, as seen previously in Algorithm 5.7.1.

An improvement over the Meet-in-the-Middle approach was proposed by Bern-

stein et al. in [16], where the ball collision decoding technique is used as an alternative

to the collision decoding technique. Allowing for approximate matching between ele-

ments in the lists L1 and L2, we can find a solution in less time and memory accesses.

Another method, proved to be asymptotically better than the previous tech-

niques, uses the subset sum representation approach described in [44] to solve the

column match problem [55], which is equivalent to finding the set of p columns that

equal t′ in the first l bits. The method was further improved in [11] by increas-

84

ing the number of column representations, thus making the task of finding a linear

combination that is equal to t′ significantly faster.

5.8 Hybrid BKW Algorithm

In this section, we suggest a modular approach to improving the BKW algorithm by

fusing it with some of the other algorithms discussed previously in this chapter. The

basic structure and algorithm remains the same. However, we strive to minimize

wasting many examples during each estimation loop of BKW by integrating more

efficient procedures for hypothesizing the vector s.

The structure of the hybrid procedure is shown in Algorithm 5.8.1. The main

difference between this algorithm and the classic BKW is that the hybrid algorithm

replaces the estimate() function with an abstract placeholder, estimateHybrid(), for

other functions to take its place. We discuss some of these functions in the following

sub-sections. Furthermore, we introduce the fusion threshold g, which determines the

maximum number of BKW linear combination loops allowed before the estimation

procedure begins, and is set according to the given k and error rate η. Hence, instead

of running the combination loop (a− 1) times to estimate a group of b bits, we run

the combination loop g ≤ (a− 1) to estimate a multiple of b-bit groups (specifically

k−gb bits). Note that if g = (a−1) then this reduces to the normal BKW procedure.

In addition to the normal LPN parameters, the algorithm accepts a, b, q, and m

as parameters to ensure that it is as flexible as possible for solving the problem. The

variables a and b represent the number of groups each example is divided into and

the size of each group (int bits), respectively. The variable q denotes the number

of repetitions for the estimation loop (number of estimates), and m indicates the

number of examples that must be selected for each estimation loop (to be reduced

by the combination loop and then used to estimate part of s).

We can interpret the time and query complexity more generally by analyzing each

85

individual sub-procedure to determine how they affect the overall performance. We

denote the running time of each combination loop (which includes the categorize()

and merge() functions) as Tc, and the running time of each estimation procedure,

estimateHybrid(), as Te. Furthermore, the number of target loops decreases from a

to Ta =
a

a− g
since, if g > (a− 1), the number of groups that are estimated at once

increases.

Thus, using the same analysis that was used in Section 5.2, we can write the

generic total time T and query Q complexities, and the memory utilization M as

follows:

T = O pTa × q × (Tc + Te)q

Q = O pq × Tcq

M = O pTcq

(5.17)

5.8.1 BKW-S Hybrid

One of the main drawbacks of the BKW algorithm is that a lot of examples are

unused and discarded after the combination stage since only vectors with weight 1

are of interest. As a more general form of LF1, which was proposed in [51], the

algorithm discussed in this section implements the estimateHybrid() function such

that it performs the Fast Walsh Transform (FWT) (see Section 4.3.1) on the entire

set of examples leftover from the combination stage to estimate the targeted bits.

For simplicity, we will assume for now that g = (a − 1), so the process is the

same as the BKW algorithm except in the last stage, we estimate the bits using the

FWT. Within the estimateHybrid() function, we set up the truth table L containing

the noisy labels for each of the possible 2b inputs. For each example ai from A′, we

set L[ai] = zi. If there exists multiple equal examples but with different labels, we

store the label that occurs the most number of times. Once we construct L, we

86

Algorithm 5.8.1 Hybrid BKW algorithm

1: procedure Hybrid BKW(A, z, η, a, b, q,m)
2:
3: Set g = f(k, η) . Set fusion threshold
4: α = 1
5: while α ≤ a do . Target Loop
6:
7: Initialize votes array v
8: for γ = 1→ q do
9: estimated← false
10: while estimated is false do . Estimation Loop
11: A′ ← subset(A, z,m)
12: c← a
13: repeat . Combination Loop
14: if c /∈ [α, α + g − 1] then

15: {Qj}2b−1
j=0 ← categorize(A′, 1 + b(c− 1), bc) . see Alg. B.0.1

16: for j = 0 to 2b − 1 do
17: Qj ← merge(Qj) . see Alg. B.0.2
18: end for
19: A′ ←

⋃2b−1
j=0 Qj

20: end if
21: c← c− 1
22: until c = 0
23: (v0,v1)← estimateHybrid(A′, α, b, g)
24: if (v0(i) + v1(i)) ≥ γ ∀ i then
25: estimated← true . All votes accounted for
26: end if
27: end while
28: end for

29:
30: for i = 1 to (a− g) do . Hypothesize partial x
31: xα = hypothesize(v0,v1, α)
32: α← α + 1
33: end for
34: end while

35:
36: x← (x1||...||xa) . Reconstruct x
37: return x
38: end procedure

submit it to the FWT procedure, which produces the most likely representation of

the function (i.e. the b bits of x that were compatible with the highest number of

examples). If we have m examples, and b < log2m, then running the transform takes

time O(2b log2m). As an example, Figure 5.5 illustrates the result of the transform

for a function of 16-bit inputs. There are 216 possibilities for the 16-bit input, and

the highest ’spike’ above the acceptable threshold gives us the most probable one.

87

Figure 5.5: The Fast Walsh Transform is computed for a given function with 16-bit
inputs. The highest absolute value of the transform above (or below) the threshold

(the red lines) gives the most likely function representation.

Incorporating the fusion threshold g, we set q = 1 (only need one estimate) and

instead use m = g2b + (a− g)b(1− 2η)−2g+1
. This will provide us with an average of

(a−g)b(1−2η)−2g+1
parity equations with which to build the truth table for the FWT.

Thus Tc = O(g2b+(a−g)b(1−2η)−2g+1
), and Te = 2(a−g)b log2 (a− g)b(1− 2η)−2g+1

.

The complexity of Te represents the running time of using the Fast Walsh Transform

(see Section 4.3.1) to estimate (a− g)b bits over (a− g)b(1− 2η)−2g+1
equations.

Figure 5.6 shows how the experimental time complexity differs with g and b. We

notice that, when k = 40, reducing the fusion threshold under the same value of b

decreases the time complexity for medium to high error rates. However, the rate of

reduction deteriorates rapidly with higher k for the same error rate. For example,

looking at the expected theoretical graphs of BKW-S for k = 80 in Figure 5.7, we

notice that reducing g for b = 20 increases the time. In fact, for larger error rates

(η > 0.35), there seems to be little to no difference between using b = 40, g = 1 and

b = 20, g = 2. Nevertheless, if one would want to choose between one of those two

88

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−4

−2

0

2

4

6

8

Error,rate

Lo
g(

T
im

e)

BKW−S,for,k,=,40

b,=,10,,g,=,3
b,=,10,,g,=,2
b,=,20,,g,=,1

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
8

10

12

14

16

18

20

Error,rate

Lo
g(

N
o.

,o
f,Q

ue
rie

s)

Figure 5.6: The experimental results of using the BKW-S algorithm for k = 40.
The left figure shows log (T) vs. η and the right figure shows log (Q) vs. η for

different combinations of b and g

parameter sets for high error rates, it is preferable to select b = 20, g = 2 since, as

illustrated in the right of Figure 5.7, it utilizes less queries within the same amount

of time.

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

Error rate

Lo
g(

T
im

e
C

om
pl

ex
ity

)

b = 40, g = 1
b = 20, g = 3
b = 20, g = 2
b = 10, g = 4

0 0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

Error rate

Lo
g(

Q
ue

ry
 C

om
pl

ex
ity

)

Figure 5.7: The theoretical expected performance of the BKW-S algorithm for
k = 80. The left figure shows log (T) vs. η and the right figure shows log (Q) vs. η

for different combinations of b and g

89

5.8.2 BKW-H Hybrid

Another hybrid procedure integrates the hashing collision algorithm described in

Section 5.3 with the BKW algorithm. In particular the function estimateHybrid() is

materialized as Algorithm 5.3.1 but for smaller-sized inputs. The difference between

Algorithm 5.3.1 and this BKW hybrid is that, in the hybrid, instead of hashing

the whole k-bit examples, we only hash the (a − g) bits of the example (those bits

that were left after the other bits were reduced to zero during the normal BKW

linear combination phase). Other than that, the same idea applies here whereupon

examples that are on the verge of being inserted into the hash table are matched

with examples already in the table with a Hamming distance of 1. When combined,

the resultant examples are of weight 1 and can be used to directly infer an estimate

of the corresponding bit of s.

Following the same analysis performed in Section 5.3 and using the hybrid com-

plexity structure (see Equation 5.17), we will set Tc = O
`

g2b + (a− g)b2(a−g)b/2
˘

because we require about g2b for the linear combination phase of BKW and an ex-

pected (a − g)b2(a−g)b/2 number of examples to ensure that we get a collision (due

to the birthday paradox). Furthermore, since we will be hashing all the available

examples, we get Te = (a−g)b2(a−g)b/2. Very much like the original BKW algorithm,

we will set the number of estimates q = poly(b, (1− 2η)−2g+2
) and take the majority

vote for estimating each bit of s.

5.9 Experimental Tests

We present here the experimental results that compare the time and query complex-

ity of some of the discussed algorithms. We decided to implement and test those

algorithms that best represented the class of attacks to which they belong.

90

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−1

0

1

2

3

4

5

6

7

8

9

Error rate (η)

Lo
g(

T
im

e)
 (

se
c)

k = 32

a = 4, b = 8
a = 2, b = 16

Figure 5.8: Shown for k = 32, the parameter a has a noticeable effect on the
performance of the BKW algorithm. The higher the error rate, the more preferable

it is to decrease a

5.9.1 Setup

The experiments were performed using a 2.4 GHz processor with a 12 MB L3 Cache

and 32 GB of physical memory. All tests were conducted using Java on a 1.6 64-bit

runtime environment.

5.9.2 BKW Parameters

The graph in Figure 5.8 shows that the optimal values for the internal variables, a

and b, of the BKW algorithm are dependant on the error rate for a specific value

of k. Therefore, in order to give an efficient concrete instantiation of the BKW

algorithm (or its derivatives) one must find the suitable values for these parameters,

given the error rate used by the scheme and the size of the security parameter k.

The asymptotic values for a and b are given as (log k)/2 and 2k/log k, respectively

[19].

91

5.9.3 Results

Figure 5.9 and Figure 5.10 show how the time and query complexity changes as the

error rates rises for k = 32 and k = 60, respectively. The solid lines are the deter-

ministic algorithms, whilst the dashed lines are the probabilistic (Random Selection

and Information Set Decoding) algorithms. We use the LF1 [51] variant of BKW-S

here.

We notice from the left figures that the RS algorithm performs comparatively

well in the low error range (η < 0.2) but deteriorates quickly to be superseded by the

hybrid BKW algorithms. Furthermore, we note that BKW-H seems to be strictly

slower than BKW-S, but is still preferable over the normal BKW procedure. While

the ISD algorithm is generally slower when compared to the other algorithms (even

against the original BKW for high error rates), it appears that its strengths lie in its

low query complexity.

The main observation we can deduce from the right figures is that the probabilistic

algorithms use much less queries than the deterministic ones. Furthermore, the ISD

is able to adapt to use less queries than RS, which uses its upper bound for the

number of queries to ensure that the minimum expected time complexity is attained.

Additionally, it is interesting to note the BKW-S algorithm becomes saturated with

queries at medium-to-high error rates such that the query complexity rate slows

down rapidly.

92

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
6

8

10

12

14

16

18

20

ErrorBrate

Lo
gD

A
ve

ra
ge

BN
um

be
rB

of
BQ

ue
rie

s)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
−6

−4

−2

0

2

4

6

8

10

ErrorBrate

Lo
gD

A
ve

ra
ge

BT
im

eB
Ds

))
BKW
BKW−SBDLF1)
BKW−H
RS
ISD

Figure 5.9: For k = 32 and using different algorithms, the left figure shows how
log (T) changes with error rate, and the right figure shows how log (Q) changes

with error rate

0 0.05 0.1 0.15 0.2 0.25
6

8

10

12

14

16

18

20

22

24

26

ErrorKrate

Lo
g(

A
ve

ra
ge

KN
um

be
rK

of
KQ

ue
rie

s)

0 0.05 0.1 0.15 0.2 0.25
−4

−2

0

2

4

6

8

10

12

14

ErrorKrate

Lo
g(

A
ve

ra
ge

KT
im

eK
(s

))

BKW
BKW−SK(LF1)
BKW−H
RS
ISD

Figure 5.10: For k = 60 and using different algorithms, the left figure shows how
log (T) changes with error rate, and the right figure shows how log (Q) changes

with error rate

93

6

Conclusion

In this thesis, we have briefly discussed the various applications and uses of lat-

tice problems in modern cryptography and presented some schemes that assume the

hardness of certain worst-case lattice problems to ensure security and confidential-

ity of the encrypted data. In particular, we focused on the Learning with Errors

(LWE) and Learning Parity with Noise (LPN) problems, which were shown to be

flexible enough to be used as underlying problems for cryptographic schemes and

primitives. It is, therefore, important to determine how resilient these problems are

so that suitable security parameters are selected to counter the efforts of determined

adversaries.

Several LPN adversaries were described in detail and analyzed in terms of per-

formance, query complexity, and memory utilization. Furthermore, suggestions for

improvements and adaptations were proposed for some of the algorithms, yielding

enhancements in one or more of the aforementioned criteria. Each of the different

algorithms demonstrated distinctive strengths and drawbacks, which allowed them

to be effective against some LPN applications but incompetent against others. For

example, a relatively fast algorithm that utilizes large amounts of memory to solve

94

the LPN problem may not be feasible if this memory is not available. Thus, an ad-

versary with well-defined capabilities and limitations should identify the weaknesses

of the targeted LPN protocol and select the best algorithm capable of breaking the

scheme as efficiently as possible given the available resources.

We conclude by raising a series of open questions for possible future work. It

would be interesting to investigate other variations of adversaries with stronger ca-

pabilities. In particular, given more than one oracle (with possibly non-uniform

key distributions) to supply the examples, can an adversary’s strategies be modified

somehow to solve the LPN problem in a more efficient way?

Another venue of exploration that is related to this subject involves studying the

possibility of extending LPN algorithms to work on solving the LWE problem, which

is used more frequently in cryptographic applications than the LPN problem. While

not all extensions appear to be trivial, or even immediately possible, it is nevertheless

a natural place to start discovering more effective solutions for the LWE problem.

95

Bibliography

[1] S. Agrawal, D. Boneh, and X. Boyen, “Efficient lattice (h)ibe in the
standard model,” in Proceedings of the 29th Annual international conference on
Theory and Applications of Cryptographic Techniques, ser. EUROCRYPT’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 553–572. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-13190-5 28. [Accessed April 2013].

[2] M. Ajtai, “Generating hard instances of lattice problems (extended abstract),”
in Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, ser. STOC ’96. New York, NY, USA: ACM, 1996, pp. 99–
108. [Online]. Available: http://doi.acm.org/10.1145/237814.237838. [Accessed
August 2012].

[3] ——, “The shortest vector problem in l2 is np-hard for randomized reductions
(extended abstract),” in Proceedings of the thirtieth annual ACM symposium
on Theory of computing, ser. STOC ’98. New York, NY, USA: ACM, 1998,
pp. 10–19. [Online]. Available: http://doi.acm.org/10.1145/276698.276705.
[Accessed April 2013].

[4] M. Ajtai and C. Dwork, “A public-key cryptosystem with worst-case/average-
case equivalence,” in Proceedings of the twenty-ninth annual ACM symposium
on Theory of computing, ser. STOC ’97. New York, NY, USA: ACM, 1997,
pp. 284–293. [Online]. Available: http://doi.acm.org/10.1145/258533.258604.
[Accessed August 2012].

[5] M. Ajtai, R. Kumar, and D. Sivakumar, “A sieve algorithm for
the shortest lattice vector problem,” in Proceedings of the thirty-third
annual ACM symposium on Theory of computing, ser. STOC ’01.
New York, NY, USA: ACM, 2001, pp. 601–610. [Online]. Available:
http://doi.acm.org/10.1145/380752.380857. [Accessed November 2012].

[6] A. Akavia, S. Goldwasser, and V. Vaikuntanathan, “Simultaneous hardcore
bits and cryptography against memory attacks,” in Proceedings of the 6th
Theory of Cryptography Conference on Theory of Cryptography, ser. TCC ’09.

96

http://dx.doi.org/10.1007/978-3-642-13190-5_28
http://doi.acm.org/10.1145/237814.237838
http://doi.acm.org/10.1145/276698.276705
http://doi.acm.org/10.1145/258533.258604
http://doi.acm.org/10.1145/380752.380857

Berlin, Heidelberg: Springer-Verlag, 2009, pp. 474–495. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-00457-5 28. [Accessed April 2013].

[7] B. Applebaum, D. Cash, C. Peikert, and A. Sahai, “Fast cryptographic
primitives and circular-secure encryption based on hard learning problems,” in
Proceedings of the 29th Annual International Cryptology Conference on Advances
in Cryptology, ser. CRYPTO ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp.
595–618. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-03356-8 35.
[Accessed March 2013].

[8] L. Babai, “On lovasz’ lattice reduction and the nearest lattice point
problem (shortened version),” in Proceedings of the 2nd Symposium of
Theoretical Aspects of Computer Science, ser. STACS ’85. London,
UK, UK: Springer-Verlag, 1985, pp. 13–20. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=646502.696106. [Accessed March 2013].

[9] A. Banerjee, C. Peikert, and A. Rosen, “Pseudorandom functions and
lattices,” in Proceedings of the 31st Annual international conference on
Theory and Applications of Cryptographic Techniques, ser. EUROCRYPT’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 719–737. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-29011-4 42. [Accessed April 2013].

[10] E. Barker, A. Roginsky, N. I. of Standards, and T. (U.S.), Recommendation for
Cryptographic Key Generation, ser. NIST special publication. U.S. Department
of Commerce, National Institute of Standards and Technology, 2012.

[11] A. Becker, A. Joux, A. May, and A. Meurer, “Decoding random binary
linear codes in 2n/20: how 1 + 1 = 0 improves information set
decoding,” in Proceedings of the 31st Annual international conference on
Theory and Applications of Cryptographic Techniques, ser. EUROCRYPT’12.
Berlin, Heidelberg: Springer-Verlag, 2012, pp. 520–536. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-29011-4 31. [Accessed January 2013].

[12] M. Bellare and P. Rogaway, “Random oracles are practical: a paradigm
for designing efficient protocols,” in Proceedings of the 1st ACM conference
on Computer and communications security, ser. CCS ’93. New York, NY,
USA: ACM, 1993, pp. 62–73. [Online]. Available: http://doi.acm.org/10.1145/
168588.168596. [Accessed March 2013].

[13] ——, “Introduction to modern cryptography,” in UCSD CSE 207 Course Notes,
2005. [Online]. Available: http://cseweb.ucsd.edu/∼mihir/cse207/classnotes.
html. [Accessed April 2013].

97

http://dx.doi.org/10.1007/978-3-642-00457-5_28
http://dx.doi.org/10.1007/978-3-642-03356-8_35
http://dl.acm.org/citation.cfm?id=646502.696106
http://dl.acm.org/citation.cfm?id=646502.696106
http://dx.doi.org/10.1007/978-3-642-29011-4_42
http://dx.doi.org/10.1007/978-3-642-29011-4_31
http://doi.acm.org/10.1145/168588.168596
http://doi.acm.org/10.1145/168588.168596
http://cseweb.ucsd.edu/~mihir/cse207/classnotes.html
http://cseweb.ucsd.edu/~mihir/cse207/classnotes.html

[14] E. Berlekamp, R. McEliece, and H. van Tilborg, “On the inherent
intractability of certain coding problems (corresp.),” IEEE Trans. Inf.
Theor., vol. 24, no. 3, pp. 384–386, Sep. 2006. [Online]. Available:
http://dx.doi.org/10.1109/TIT.1978.1055873. [Accessed February 2013].

[15] D. J. Bernstein, J. Buchmann, and E. Dahmen, Post Quantum Cryptography,
1st ed. Springer Publishing Company, Incorporated, 2008.

[16] D. J. Bernstein, T. Lange, and C. Peters, “Smaller decoding exponents:
ball-collision decoding,” in Proceedings of the 31st annual conference on
Advances in cryptology, ser. CRYPTO’11. Berlin, Heidelberg: Springer-Verlag,
2011, pp. 743–760. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2033036.2033092. [Accessed January 2013].

[17] J. Blömer and J.-P. Seifert, “On the complexity of computing short linearly
independent vectors and short bases in a lattice,” in Proceedings of the
thirty-first annual ACM symposium on Theory of computing, ser. STOC
’99. New York, NY, USA: ACM, 1999, pp. 711–720. [Online]. Available:
http://doi.acm.org/10.1145/301250.301441. [Accessed April 2013].

[18] A. Blum, M. L. Furst, M. J. Kearns, and R. J. Lipton, “Cryptographic
primitives based on hard learning problems,” in Proceedings of the 13th Annual
International Cryptology Conference on Advances in Cryptology, ser. CRYPTO
’93. London, UK: Springer-Verlag, 1994, pp. 278–291. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646758.759585. [Accessed January 2012].

[19] A. Blum, A. Kalai, and H. Wasserman, “Noise-tolerant learning, the parity
problem, and the statistical query model,” J. ACM, vol. 50, no. 4, pp. 506–519,
Jul. 2003. [Online]. Available: http://doi.acm.org/10.1145/792538.792543.
[Accessed January 2012].

[20] Z. Brakerski, “Fully homomorphic encryption without modulus switching from
classical gapsvp,” in Advances in Cryptology - Crypto 2012, ser. Lecture
Notes in Computer Science, vol. 7417. Springer, 2012, pp. 868–886. [Online].
Available: http://eprint.iacr.org/2012/078.pdf. [Accessed April 2013].

[21] Z. Brakerski, C. Gentry, and V. Vaikuntanathan, “(leveled) fully homomorphic
encryption without bootstrapping,” pp. 309–325, 2012. [Online]. Available:
http://doi.acm.org/10.1145/2090236.2090262. [Accessed April 2013].

[22] Z. Brakerski and V. Vaikuntanathan, “Efficient fully homomorphic encryption
from (standard) lwe,” in Proceedings of the 2011 IEEE 52nd Annual
Symposium on Foundations of Computer Science, ser. FOCS ’11. Washington,

98

http://dx.doi.org/10.1109/TIT.1978.1055873
http://dl.acm.org/citation.cfm?id=2033036.2033092
http://dl.acm.org/citation.cfm?id=2033036.2033092
http://doi.acm.org/10.1145/301250.301441
http://dl.acm.org/citation.cfm?id=646758.759585
http://doi.acm.org/10.1145/792538.792543
http://eprint.iacr.org/2012/078.pdf
http://doi.acm.org/10.1145/2090236.2090262

DC, USA: IEEE Computer Society, 2011, pp. 97–106. [Online]. Available:
http://dx.doi.org/10.1109/FOCS.2011.12. [Accessed October 2012].

[23] J. Bringer and H. Chabanne, “Trusted-hb: A low-cost version of
hb+ secure against man-in-the-middle attacks,” IEEE Trans. Inf. Theor.,
vol. 54, no. 9, pp. 4339–4342, Sep. 2008. [Online]. Available: http:
//dx.doi.org/10.1109/TIT.2008.928290. [Accessed December 2012].

[24] J. Carrijo, R. Tonicelli, H. Imai, and A. C. A. Nascimento, “A novel probabilistic
passive attack on the protocols hb and hb+,” IACR Cryptology ePrint Archive,
vol. 2008, p. 231, 2008. [Online]. Available: http://eprint.iacr.org/2008/231.pdf.
[Accessed January 2013].

[25] P. Chose, A. Joux, and M. Mitton, “Fast correlation attacks: An algorithmic
point of view,” in Proceedings of the International Conference on the Theory
and Applications of Cryptographic Techniques: Advances in Cryptology,
ser. EUROCRYPT ’02. London, UK: Springer-Verlag, 2002, pp. 209–
221. [Online]. Available: http://dl.acm.org/citation.cfm?id=647087.715845.
[Accessed December 2012].

[26] D. Coppersmith, “Small solutions to polynomial equations, and low exponent
rsa vulnerabilities,” Journal of Cryptology, vol. 10, no. 4, pp. 233–260,
1997. [Online]. Available: http://dx.doi.org/10.1007/s001459900030. [Accessed
March 2013].

[27] J. Ding, “New cryptographic constructions using generalized learning with errors
problem,” Cryptology ePrint Archive, Report 2012/387, 2012, http://eprint.
iacr.org/, [Accessed April 2013].

[28] I. Dinur, G. Kindler, and S. Safra, “Approximating-cvp to within
almost-polynomial factors is np-hard,” in Proceedings of the 39th Annual
Symposium on Foundations of Computer Science, ser. FOCS ’98. Washington,
DC, USA: IEEE Computer Society, 1998, p. 99. [Online]. Available:
http://dl.acm.org/citation.cfm?id=795664.796466. [Accessed April 2013].

[29] J.-B. Fischer and J. Stern, “An efficient pseudo-random generator provably
as secure as syndrome decoding,” in Proceedings of the 15th annual
international conference on Theory and application of cryptographic techniques,
ser. EUROCRYPT’96. Berlin, Heidelberg: Springer-Verlag, 1996, pp. 245–
255. [Online]. Available: http://dl.acm.org/citation.cfm?id=1754495.1754526.
[Accessed December 2012].

99

http://dx.doi.org/10.1109/FOCS.2011.12
http://dx.doi.org/10.1109/TIT.2008.928290
http://dx.doi.org/10.1109/TIT.2008.928290
http://eprint.iacr.org/2008/231.pdf
http://dl.acm.org/citation.cfm?id=647087.715845
http://dx.doi.org/10.1007/s001459900030
http://eprint.iacr.org/
http://eprint.iacr.org/
http://dl.acm.org/citation.cfm?id=795664.796466
http://dl.acm.org/citation.cfm?id=1754495.1754526

[30] M. P. Fossorier, M. J. Mihaljevic, H. Imai, Y. Cui, and K. Matsuura, “A
novel algorithm for solving the lpn problem and its application to security
evaluation of the hb protocol for rfid authentication,” 2006. [Online]. Available:
http://eprint.iacr.org/2006/197. [Accessed January 2013].

[31] N. Gama and P. Q. Nguyen, “Predicting lattice reduction,” in Proceedings
of the theory and applications of cryptographic techniques 27th annual
international conference on Advances in cryptology, ser. EUROCRYPT’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 31–51. [Online]. Available:
http://dl.acm.org/citation.cfm?id=1788414.1788417. [Accessed March 2013].

[32] C. F. Gauss, Disquisitiones Arithmeticae. New York: Springer-Verlag, 1986.

[33] C. Gentry, “Fully homomorphic encryption using ideal lattices,” in Proceedings
of the 41st annual ACM symposium on Theory of computing, ser. STOC
’09. New York, NY, USA: ACM, 2009, pp. 169–178. [Online]. Available:
http://doi.acm.org/10.1145/1536414.1536440. [Accessed April 2012].

[34] C. Gentry, C. Peikert, and V. Vaikuntanathan, “Trapdoors for hard
lattices and new cryptographic constructions,” in Proceedings of the
40th annual ACM symposium on Theory of computing, ser. STOC ’08.
New York, NY, USA: ACM, 2008, pp. 197–206. [Online]. Available:
http://doi.acm.org/10.1145/1374376.1374407. [Accessed January 2013].

[35] H. Gilbert, M. J. Robshaw, and Y. Seurin, “How to encrypt with
the lpn problem,” in Proceedings of the 35th international colloquium
on Automata, Languages and Programming, Part II, ser. ICALP ’08.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 679–690. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-70583-3 55. [Accessed December 2012].

[36] H. Gilbert, M. J. B. Robshaw, and Y. Seurin, “Hb#: increasing the security and
efficiency of hb+,” in Proceedings of the theory and applications of cryptographic
techniques 27th annual international conference on Advances in cryptology,
ser. EUROCRYPT’08. Berlin, Heidelberg: Springer-Verlag, 2008, pp. 361–
378. [Online]. Available: http://dl.acm.org/citation.cfm?id=1788414.1788435.
[Accessed December 2012].

[37] H. Gilbert, M. J. B. Robshaw, and H. Sibert, “An active attack
against hb+ - a provably secure lightweight authentication protocol,” IACR
Cryptology ePrint Archive, vol. 2005, p. 237, 2005. [Online]. Available:
http://eprint.iacr.org/2005/237.pdf. [Accessed December 2012].

100

http://eprint.iacr.org/2006/197
http://dl.acm.org/citation.cfm?id=1788414.1788417
http://doi.acm.org/10.1145/1536414.1536440
http://doi.acm.org/10.1145/1374376.1374407
http://dx.doi.org/10.1007/978-3-540-70583-3_55
http://dl.acm.org/citation.cfm?id=1788414.1788435
http://eprint.iacr.org/2005/237.pdf

[38] O. Goldreich, D. Micciancio, S. Safra, and J. P. Seifert, “Approximating
shortest lattice vectors is not harder than approximating closet lattice vectors,”
Inf. Process. Lett., vol. 71, no. 2, pp. 55–61, Jul. 1999. [Online]. Available:
http://dx.doi.org/10.1016/S0020-0190(99)00083-6. [Accessed April 2013].

[39] O. Goldreich, S. Goldwasser, and S. Halevi, “Eliminating decryption
errors in the ajtai-dwork cryptosystem,” in Proceedings of the 17th Annual
International Cryptology Conference on Advances in Cryptology, ser. CRYPTO
’97. London, UK: Springer-Verlag, 1997, pp. 105–111. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646762.706188. [Accessed December 2012].

[40] ——, “Public-key cryptosystems from lattice reduction problems,” in
Proceedings of the 17th Annual International Cryptology Conference on Advances
in Cryptology, ser. CRYPTO ’97. London, UK: Springer-Verlag, 1997, pp. 112–
131. [Online]. Available: http://dl.acm.org/citation.cfm?id=646762.706185.
[Accessed April 2013].

[41] S. Goldwasser, Y. T. Kalai, C. Peikert, and V. Vaikuntanathan, “Robustness
of the learning with errors assumption,” in ICS’10, 2010, pp. 230–
240. [Online]. Available: http://www.cs.toronto.edu/∼vinodv/robustlwe.pdf.
[Accessed March 2013].

[42] M. Henk, “Note on shortest and nearest lattice vectors,” Inf. Process.
Lett., vol. 61, no. 4, pp. 183–188, Feb. 1997. [Online]. Available:
http://dx.doi.org/10.1016/S0020-0190(97)00019-7. [Accessed April 2013].

[43] N. J. Hopper and M. Blum, “Secure human identification protocols,” in
Proceedings of the 7th International Conference on the Theory and Application of
Cryptology and Information Security: Advances in Cryptology, ser. ASIACRYPT
’01. London, UK: Springer-Verlag, 2001, pp. 52–66. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647097.717000. [Accessed September 2012].

[44] N. Howgrave-Graham and A. Joux, “New generic algorithms for hard
knapsacks,” in Proceedings of the 29th Annual international conference on
Theory and Applications of Cryptographic Techniques, ser. EUROCRYPT’10.
Berlin, Heidelberg: Springer-Verlag, 2010, pp. 235–256. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-13190-5 12. [Accessed January 2013].

[45] A. Joux, Algorithmic Cryptanalysis, 1st ed. Chapman & Hall/CRC, 2009.

[46] A. Juels and S. A. Weis, “Authenticating pervasive devices with human
protocols,” in Proceedings of the 25th annual international conference on
Advances in Cryptology, ser. CRYPTO’05. Berlin, Heidelberg: Springer-Verlag,

101

http://dx.doi.org/10.1016/S0020-0190(99)00083-6
http://dl.acm.org/citation.cfm?id=646762.706188
http://dl.acm.org/citation.cfm?id=646762.706185
http://www.cs.toronto.edu/~vinodv/robustlwe.pdf
http://dx.doi.org/10.1016/S0020-0190(97)00019-7
http://dl.acm.org/citation.cfm?id=647097.717000
http://dx.doi.org/10.1007/978-3-642-13190-5_12

2005, pp. 293–308. [Online]. Available: http://dx.doi.org/10.1007/11535218 18.
[Accessed September 2012].

[47] J. Katz and J. S. Shin, “Parallel and concurrent security of the hb and hb+
protocols,” in Proceedings of the 24th annual international conference on The
Theory and Applications of Cryptographic Techniques, ser. EUROCRYPT’06.
Berlin, Heidelberg: Springer-Verlag, 2006, pp. 73–87. [Online]. Available:
http://dx.doi.org/10.1007/11761679 6. [Accessed December 2012].

[48] S. Khot, “Hardness of approximating the shortest vector problem in lattices,”
J. ACM, vol. 52, no. 5, pp. 789–808, Sep. 2005. [Online]. Available:
http://doi.acm.org/10.1145/1089023.1089027. [Accessed April 2013].

[49] A. Lenstra, J. Lenstra, H.W., and L. Lovasz, “Factoring polynomials with
rational coefficients,” Mathematische Annalen, vol. 261, no. 4, pp. 515–534,
1982. [Online]. Available: http://dx.doi.org/10.1007/BF01457454. [Accessed
March 2013].

[50] J. S. Leon, “A probabilistic algorithm for computing minimum weights of large
error-correcting codes,” IEEE Trans. Inf. Theor., vol. 34, no. 5, pp. 1354–1359,
Sep. 2006. [Online]. Available: http://dx.doi.org/10.1109/18.21270. [Accessed
January 2013].

[51] E. Levieil and P.-A. Fouque, “An improved lpn algorithm,” in Proceedings of
the 5th international conference on Security and Cryptography for Networks,
ser. SCN’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 348–359. [Online].
Available: http://dx.doi.org/10.1007/11832072 24. [Accessed January 2013].

[52] Y.-K. Liu, V. Lyubashevsky, and D. Micciancio, “On bounded distance
decoding for general lattices,” in Proceedings of the 9th international conference
on Approximation Algorithms for Combinatorial Optimization Problems,
and 10th international conference on Randomization and Computation, ser.
APPROX’06/RANDOM’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp.
450–461. [Online]. Available: http://dx.doi.org/10.1007/11830924 41. [Accessed
April 2013].

[53] V. Lyubashevsky and D. Micciancio, “On bounded distance decoding, unique
shortest vectors, and the minimum distance problem,” in Proceedings of the
29th Annual International Cryptology Conference on Advances in Cryptology,
ser. CRYPTO ’09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 577–594.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-03356-8 34. [Accessed
April 2013].

102

http://dx.doi.org/10.1007/11535218_18
http://dx.doi.org/10.1007/11761679_6
http://doi.acm.org/10.1145/1089023.1089027
http://dx.doi.org/10.1007/BF01457454
http://dx.doi.org/10.1109/18.21270
http://dx.doi.org/10.1007/11832072_24
http://dx.doi.org/10.1007/11830924_41
http://dx.doi.org/10.1007/978-3-642-03356-8_34

[54] M. J. M. Marc P. C. Fossorier and H. Imai, “A unified analysis on block decoding
approaches for the fast correlation attack,” in IEEE Int. Symp. Inform. Theory
- ISIT, 2005, pp. 2012 – 2015.

[55] A. May, A. Meurer, and E. Thomae, “Decoding random linear codes in
O(20.054n),” in Proceedings of the 17th international conference on The Theory
and Application of Cryptology and Information Security, ser. ASIACRYPT’11.
Berlin, Heidelberg: Springer-Verlag, 2011, pp. 107–124. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-25385-0 6. [Accessed January 2013].

[56] R. J. Mceliece, “A public-key cryptosystem based on algebraic coding theory,”
Jet Propulsion Lab Deep Space Network Progress report, Tech. Rep., 1978.

[57] D. Micciancio, “The shortest vector in a lattice is hard to approximate
to within some constant,” in Proceedings of the 39th Annual Symposium
on Foundations of Computer Science, ser. FOCS ’98. Washington,
DC, USA: IEEE Computer Society, 1998, p. 92. [Online]. Available:
http://dl.acm.org/citation.cfm?id=795664.796467. [Accessed April 2013].

[58] D. Micciancio and S. Goldwasser, Complexity of Lattice Problems: a crypto-
graphic perspective, ser. The Kluwer International Series in Engineering and
Computer Science. Boston, Massachusetts: Kluwer Academic Publishers, Mar.
2002, vol. 671.

[59] D. Micciancio and O. Regev, “Worst-case to average-case reductions based on
gaussian measures,” SIAM J. Comput., vol. 37, no. 1, pp. 267–302, Apr. 2007.
[Online]. Available: http://dx.doi.org/10.1137/S0097539705447360. [Accessed
April 2013].

[60] M. J. Mihaljevic, M. P. C. Fossorier, and H. Imai, “Fast correlation attack
algorithm with list decoding and an application,” in Revised Papers from
the 8th International Workshop on Fast Software Encryption, ser. FSE
’01. London, UK: Springer-Verlag, 2002, pp. 196–210. [Online]. Available:
http://dl.acm.org/citation.cfm?id=647936.741079. [Accessed January 2013].

[61] M. J. Mihaljević, M. P. C. Fossorier, and H. Imai, “Cryptanalysis of keystream
generator by decimated sample based algebraic and fast correlation attacks,”
in Proceedings of the 6th international conference on Cryptology in India, ser.
INDOCRYPT’05. Berlin, Heidelberg: Springer-Verlag, 2005, pp. 155–168.
[Online]. Available: http://dx.doi.org/10.1007/11596219 13. [Accessed January
2013].

103

http://dx.doi.org/10.1007/978-3-642-25385-0_6
http://dl.acm.org/citation.cfm?id=795664.796467
http://dx.doi.org/10.1137/S0097539705447360
http://dl.acm.org/citation.cfm?id=647936.741079
http://dx.doi.org/10.1007/11596219_13

[62] ——, “A general formulation of algebraic and fast correlation attacks based
on dedicated sample decimation,” in Proceedings of the 16th international
conference on Applied Algebra, Algebraic Algorithms and Error-Correcting
Codes, ser. AAECC’06. Berlin, Heidelberg: Springer-Verlag, 2006, pp. 203–214.
[Online]. Available: http://dx.doi.org/10.1007/11617983 20. [Accessed January
2013].

[63] P. Q. Nguyen, “Cryptanalysis of the goldreich-goldwasser-halevi cryptosystem
from crypto ’97,” London, UK, pp. 288–304, 1999. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646764.703978. [Accessed December 2012].

[64] P. Q. Nguyen and J. Stern, “Cryptanalysis of the ajtai-dwork cryptosystem,” in
Proceedings of the 18th Annual International Cryptology Conference on Advances
in Cryptology, ser. CRYPTO ’98. London, UK: Springer-Verlag, 1998, pp. 223–
242. [Online]. Available: http://dl.acm.org/citation.cfm?id=646763.706326.
[Accessed December 2012].

[65] C. Peikert, “Public-key cryptosystems from the worst-case shortest vector
problem: extended abstract,” in Proceedings of the 41st annual ACM symposium
on Theory of computing, ser. STOC ’09. New York, NY, USA: ACM, 2009,
pp. 333–342. [Online]. Available: http://doi.acm.org/10.1145/1536414.1536461.
[Accessed June 2012].

[66] C. Peikert, V. Vaikuntanathan, and B. Waters, “A framework for efficient
and composable oblivious transfer,” in Proceedings of the 28th Annual
conference on Cryptology: Advances in Cryptology, ser. CRYPTO 2008.
Berlin, Heidelberg: Springer-Verlag, 2008, pp. 554–571. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-85174-5 31. [Accessed April 2012].

[67] C. Peikert and B. Waters, “Lossy trapdoor functions and their applications,” in
Proceedings of the 40th annual ACM symposium on Theory of computing, ser.
STOC ’08. New York, NY, USA: ACM, 2008, pp. 187–196. [Online]. Available:
http://doi.acm.org/10.1145/1374376.1374406. [Accessed April 2012].

[68] O. Regev, “On lattices, learning with errors, random linear codes, and
cryptography,” in Proceedings of the thirty-seventh annual ACM symposium
on Theory of computing, ser. STOC ’05. New York, NY, USA: ACM, 2005,
pp. 84–93. [Online]. Available: http://doi.acm.org/10.1145/1060590.1060603.
[Accessed June 2012].

[69] A. Shamir, “A polynomial time algorithm for breaking the basic merkle-
hellman cryptosystem,” in Proceedings of the 23rd Annual Symposium
on Foundations of Computer Science, ser. SFCS ’82. Washington, DC,

104

http://dx.doi.org/10.1007/11617983_20
http://dl.acm.org/citation.cfm?id=646764.703978
http://dl.acm.org/citation.cfm?id=646763.706326
http://doi.acm.org/10.1145/1536414.1536461
http://dx.doi.org/10.1007/978-3-540-85174-5_31
http://doi.acm.org/10.1145/1374376.1374406
http://doi.acm.org/10.1145/1060590.1060603

USA: IEEE Computer Society, 1982, pp. 145–152. [Online]. Available:
http://dx.doi.org/10.1109/SFCS.1982.55. [Accessed March 2013].

[70] D. Simon, “Selected applications of lll in number theory,” in The LLL
Algorithm: Survey and Applications, ser. LLL+25, 2007, pp. 264–281. [Online].
Available: http://www.math.unicaen.fr/∼simon/maths/lll25.html. [Accessed
March 2013].

[71] J. Stern, “A method for finding codewords of small weight,” in Proceedings
of the 3rd International Colloquium on Coding Theory and Applications.
London, UK: Springer-Verlag, 1989, pp. 106–113. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646721.702702. [Accessed January 2013].

[72] J. van de Pol, Lattice-based Cryptography, The Netherlands, 2011.

[73] P. van Emde Boas, “Another np-complete partition problem and the
complexity of computing short vectors in a lattice,” in Technical Report 81-04,
Mathematische Instituut, University of Amsterdam, 1981, p. 10. [Online].
Available: http://staff.science.uva.nl/∼peter/vectors/mi8104c.html. [Accessed
April 2013].

[74] D. Wagner, “A generalized birthday problem,” in Proceedings of the 22nd Annual
International Cryptology Conference on Advances in Cryptology, ser. CRYPTO
’02. London, UK: Springer-Verlag, 2002, pp. 288–303. [Online]. Available:
http://dl.acm.org/citation.cfm?id=646767.704294. [Accessed February 2013].

[75] U. Wagner, “Solving the LPN problem in cube-root time,” CoRR, vol.
abs/1201.4725, 2012. [Online]. Available: http://arxiv.org/pdf/1201.4725.pdf.
[Accessed January 2013].

105

http://dx.doi.org/10.1109/SFCS.1982.55
http://www.math.unicaen.fr/~simon/maths/lll25.html
http://dl.acm.org/citation.cfm?id=646721.702702
http://staff.science.uva.nl/~peter/vectors/mi8104c.html
http://dl.acm.org/citation.cfm?id=646767.704294
http://arxiv.org/pdf/1201.4725.pdf

Appendix A

Theorems

Minkowski’s Theorem

This version of the theorem’s definition is adopted from [58].

Theorem A.0.1 (Minkowski’s Theorem). Given any n-dimensional full-rank lattice

Λ and a convex set S ⊂ span(Λ) that is symmetric about the origin, if the volume of

S is greater than 2ndet(Λ), then S contains a non-zero lattice point x ∈ Λ.

Boole’s Inequality

Theorem A.0.2 (Boole’s Inequality). Let E1, ..., En be events over some sample

space S. Then the following inequality holds:

Pr[E1 ∨ ... ∨ En] ≤
n∑
i=1

Pr[Ei] (A.1)

Hoeffding’s Inequality

We show here the special case of the theorem for Bernoulli random variables.

Theorem A.0.3 (Hoeffding’s Inequality). Let X1, ..., Xn be n independent, identi-

cally distributed random variables where, for all i, Xi ∼ Ber(p). Let X =
∑n

i=1Xi

106

and E[X] = µ = np. Then, for any ε > 0, the following inequalities hold:

Pr[X − µ > nε] ≤ 2 exp(−2nε2) (A.2)

Pr[X − µ < −nε] ≤ 2 exp(−2nε2) (A.3)

107

Appendix B

Sub-Procedures

Categorizing Examples

Algorithm B.0.1 describes the procedure used to categorize the (k + 1)-bit labeled

examples (columns) in a given set A ∈ Z(k+1)×n
2 into separate partitions based on

bits (b, b + 1, ..., c) of each example. The output, {Qj}tj=1, is a set of t = 2(c−b+1)

disjoint partitions, where each partition has examples with identical segments of bits

in positions [b, c]. The expected size of each partition is n/t. Assuming that n >> k,

the time complexity is O(n).

Algorithm B.0.1 Categorize Sub-Procedure

1: procedure Categorize(A, b, c)
2: t = 2(c−b+1)

3: Qj = {} ∀ j ∈ [1, t]
4: for each a ∈ A do
5: p← (ac||ac−1||...||ab)
6: Qp = Qp ∪ a
7: end for
8: return {Qj}tj=1

9: end procedure

108

Merging Examples

Algorithm B.0.2 describes the sub-procedure used by the BKW algorithm (see Algo-

rithm 5.2.1) to add (mod 2) one randomly selected (k + 1)-bit example from the set

A of size n to all the other (k + 1)-bit labeled examples in the set. The size of the

A at the end is n− 1 since we discard the victim example. Assuming that n >> k,

the time needed to perform this procedure is O(n).

Algorithm B.0.2 Merge Sub-Procedure

1: procedure Merge(A)
2: ar ← randomSelect(A)
3: for each a ∈ A\ar do
4: a = a⊕ ar
5: end for
6: A← A− ar
7: return A
8: end procedure

Bit Estimation

Algorithm B.0.3 describes the sub-procedure used by the BKW algorithm (see Al-

gorithm 5.2.1) to aggregate the estimates of each bit of the key by using the unit

vectors present in the supplied set A of n examples. Assuming that n >> k, the

time needed to perform this procedure is O(n).

109

Algorithm B.0.3 Estimation Sub-Procedure

1: procedure Estimate(A, α, b)
2: (k, n) = Dim(A)
3: v0i ∀ i ∈ [1, b]
4: v1i ∀ i ∈ [1, b]
5: for each (a, z) ∈ A do
6: if wt(a) = 1 then
7: j ← findIndexOfOne(a)
8: j = (α− 1)b− j
9: vz(j)← vz(j) + 1
10: end if
11: end for
12: return (v0,v1)
13: end procedure

110

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	1 Introduction
	1.1 Notation
	1.2 Problem Reductions
	1.3 Classes of Cryptographic Systems

	2 Lattice-Based Cryptography
	2.1 Lattices
	2.2 Gram-Schmidt Orthogonalization
	2.3 Lattice Problems
	2.3.1 Shortest Independent Vector Problem
	2.3.2 Shortest Vector Problem
	2.3.3 Unique Shortest Vector Problem
	2.3.4 Promise SVP
	2.3.5 Small Integer Solutions
	2.3.6 Closest Vector Problem
	2.3.7 Bounded Distance Decoding

	2.4 Problem Relations
	2.5 Worst-case and Average-case Hardness
	2.6 Cryptographic Applications
	2.6.1 Ajtai-Dwork
	2.6.2 GGH Cryptosystem

	3 Learning with Errors
	3.1 The General LWE Problem
	3.2 Hardness Results
	3.2.1 Classical-Quantum Reduction
	3.2.2 Full Classical Reduction
	3.2.3 Search-LWE to Decision-LWE Reduction
	3.2.4 Worst-case to Average-case Reduction

	3.3 Known Solutions
	3.4 Cryptographic Applications
	3.5 Learning Parity with Noise
	3.5.1 Pseudorandom Generator
	3.5.2 HB Protocol
	3.5.3 The LPN-C Encryption Scheme

	4 Cryptanalytic Tools
	4.1 Brute Force Approaches
	4.2 Birthday Attacks
	4.2.1 Birthday-based Algorithms
	4.2.2 Generalized Birthday Problem

	4.3 The Walsh-Hadamard Transform
	4.3.1 Fast Walsh Transform
	4.3.2 Linear Correlation

	4.4 Lattice-Based Cryptanalysis
	4.4.1 Gauss' Algorithm
	4.4.2 LLL Algorithm
	4.4.3 Nearest Plane Algorithm

	5 LPN Algorithms
	5.1 Adversary Definition
	5.2 BKW Algorithm
	5.2.1 Noise Amplification
	5.2.2 Sample Definitions
	5.2.3 Design
	5.2.4 Analysis

	5.3 Hash Collision
	5.3.1 Design
	5.3.2 Analysis

	5.4 Fast Correlation Attacks
	5.4.1 FMICM Algorithm
	5.4.2 The Cube Root Method

	5.5 LF2 Algorithm
	5.5.1 Design
	5.5.2 Analysis

	5.6 Random Sampling
	5.6.1 Design
	5.6.2 Analysis

	5.7 Information Set Decoding
	5.7.1 Computational Syndrome Decoding
	5.7.2 ISD Algorithm
	5.7.3 Design
	5.7.4 Analysis
	5.7.5 ISD Improvements

	5.8 Hybrid BKW Algorithm
	5.8.1 BKW-S Hybrid
	5.8.2 BKW-H Hybrid

	5.9 Experimental Tests
	5.9.1 Setup
	5.9.2 BKW Parameters
	5.9.3 Results

	6 Conclusion
	Bibliography
	Appendix A Theorems
	Appendix B Sub-Procedures

